1887

Abstract

Polarography was used to measure the copper-binding ability of culture filtrates from a range of sulphate-reducing bacteria (SRB), including pure cultures and environmental isolates. Of those tested, was shown to have the greatest copper-binding capacity and this organism was used for further experiments. Extracellular copper- and zinc-binding activities of culture filtrates from batch cultures increased over time and reached a maximum after 10 d growth. The culture filtrate was shown to bind copper reversibly and zinc irreversibly. Twelve-day-old culture filtrates were shown to have a copper-binding capacity of 364±033 μmol ml with a stability constant, log , of 568±064 (=4). The metal-binding compound was partially purified from culture growth media by dichloromethane extraction followed by HPLC using an acetonitrile gradient.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-10-2987
1999-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/10/1452987a.html?itemId=/content/journal/micro/10.1099/00221287-145-10-2987&mimeType=html&fmt=ahah

References

  1. Barnes, L. J., Janssen, F. J., Scheeren, P. J. H., Versteegh, J. H. & Koch, R. O. ( 1992; ). Simultaneous microbial removal of sulfate and heavy-metals from waste-water. Trans Inst Min Metall Sect C 101, C183-189.
    [Google Scholar]
  2. Beech, I. B. & Cheung, C. W. S. ( 1995; ). Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int Biodeterior Biodegrad 35, 59-72.[CrossRef]
    [Google Scholar]
  3. van den Berg, C. M. G. ( 1982; ). Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2. 1. Theory. Mar Chem 11, 307-322.[CrossRef]
    [Google Scholar]
  4. van den Berg, C. M. G. ( 1995; ). Evidence for organic complexation of iron in seawater. Mar Chem 50, 139-157.[CrossRef]
    [Google Scholar]
  5. van den Berg, C. M. G. & Donat, J. R. ( 1992; ). Determination and data evaluation of copper complexation by organic ligands in sea water using cathodic stripping voltammetry at varying detection windows. Anal Chim Acta 257, 281-291.[CrossRef]
    [Google Scholar]
  6. Beveridge, T. J. ( 1986; ). The immobilisation of soluble metals by bacterial walls. Biotechnol Bioeng Symp 16, 127-139.
    [Google Scholar]
  7. Beveridge, T. J., Hughes, M. N., Lee, H., Leung, K. T., Poole, R. K., Savvaidis, I., Silver, S. & Trevors, J. T. ( 1997; ). Metal–microbe interactions: contemporary approaches. Adv Microb Physiol 38, 177-243.
    [Google Scholar]
  8. Birch, L. & Bachofen, R. ( 1990; ). Complexing agents from microorganisms. Experientia 46, 827-834.[CrossRef]
    [Google Scholar]
  9. Bradford, M. B. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef]
    [Google Scholar]
  10. Bulman, R. A. ( 1978; ). Chemistry of plutonium and the transuranics in the biosphere. Struct Bonding 34, 39-77.
    [Google Scholar]
  11. Burgstaller, W. & Schinner, F. ( 1993; ). Leaching of metals with fungi. J Biotechnol 27, 91-116.[CrossRef]
    [Google Scholar]
  12. Crumbliss, A. L. ( 1991; ). Aqueous solution equilibrium and kinetic studies of iron siderophore and model siderophore complexes. In CRC Handbook of Microbial Iron Chelates, pp. 177-233. Edited by G. Winkelmann. Boca Raton, FL: CRC Press.
  13. Eide, D. J. ( 1998; ). The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18, 441-469.[CrossRef]
    [Google Scholar]
  14. Ensley, B. D. & Suflita, J. M. ( 1995; ). Metabolism of environmental contaminants by mixed and pure cultures of sulphate-reducing bacteria. In Sulphate-Reducing Bacteria, pp. 293-332. Edited by L. L. Barton. New York: Plenum.
  15. Gadd, G. M. ( 1999; ). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41, 47-92.
    [Google Scholar]
  16. Gadd, G. M. & White, C. ( 1993; ). Microbial treatment of metal pollution – a working biotechnology? Trends Biotechnol 11, 353-359.[CrossRef]
    [Google Scholar]
  17. Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. M. ( 1986; ). Hydrogen ion buffers for biological research. Biochemistry 5, 467-474.
    [Google Scholar]
  18. Guerinot, M. L. ( 1994; ). Microbial iron transport. Annu Rev Microbiol 48, 743-772.[CrossRef]
    [Google Scholar]
  19. Hansen, T. A. ( 1993; ). Carbon metabolism in sulphate-reducing bacteria. In The Sulphate-Reducing Bacteria: Contemporary Perspectives, pp. 21-40. Edited by J. M. Odom & R. Singleton. New York: Springer.
  20. Hao, O. J., Chen, J. M., Huang, L. & Buglass, R. L. ( 1996; ). Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26, 155-187.[CrossRef]
    [Google Scholar]
  21. Harwood-Sears, V. & Gordon, A. S. ( 1990; ). Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus. Appl Environ Microbiol 56, 1327-1332.
    [Google Scholar]
  22. Howe, R., Evans, R. L. & Ketteridge, S. W. ( 1997; ). Copper-binding proteins in ectomycorrhizal fungi. New Phytol 135, 123-131.[CrossRef]
    [Google Scholar]
  23. Hughes, M. N. & Poole, R. K. (1989). Metals and Micro-organisms. London: Chapman & Hall.
  24. Lewis, B. L., Holt, P. D., Taylor, S. W., Wilhelm, S. W., Trick, C. G., Butler, A. & Luther, G. W. ( 1995; ). Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Mar Chem 50, 179-188.[CrossRef]
    [Google Scholar]
  25. Lide, D. R. (1995). CRC Handbook of Chemistry and Physics, 76th edn. Boca Raton, FL: CRC Press.
  26. Lund, W. ( 1986; ). Electrochemical methods and their limitations for the determination of metal species in natural waters. In The Importance of Chemical Speciation in Environmental Processes, pp. 533-561. Edited by M. Bernhard, P. B. Brinckman & P. J. Sadler. Berlin: Springer.
  27. Neilands, J. B. ( 1981; ). Microbial iron compounds. Annu Rev Biochem 50, 715-731.[CrossRef]
    [Google Scholar]
  28. Nurnberg, H. W. ( 1984; ). Potentialities of voltammetry for the study of physiochemical aspects of heavy metal complexation in natural waters. In Complexation of Trace Metals in Natural Waters, pp. 1-16. Edited by C. J. M. Kramer & J. C. Duinker. The Hague: Junk Publishers.
  29. Postgate, J. R. (1984). The Sulphate-Reducing Bacteria. Cambridge: Cambridge University Press.
  30. Rauser, W. E. ( 1995; ). Phytochelatins and related peptides. Plant Physiol 109, 1141-1149.[CrossRef]
    [Google Scholar]
  31. Rayner, M. H. & Sadler, P. J. ( 1989; ). Cadmium accumulation and resistance mechanisms in bacteria. In Metal–Microbe Interactions, pp. 39-49. Edited by R. K. Poole & G. M. Gadd. Oxford: IRL Press.
  32. Ruzic, I. ( 1982; ). Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Anal Chim Acta 140, 99-113.[CrossRef]
    [Google Scholar]
  33. Sayer, J. A. & Gadd, G. M. ( 1997; ). Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 101, 653-661.[CrossRef]
    [Google Scholar]
  34. Schreiber, D. R., Millero, F. J. & Gordon, A. S. ( 1990; ). Production of an extracellular copper-binding compound by the heterotrophic marine bacterium Vibrio alginolyticus. Mar Chem 28, 275-284.[CrossRef]
    [Google Scholar]
  35. Shuman, L. M. ( 1994; ). Chelate and pH effects on aluminum determined by differential pulse polarography and plant root bioassay. J Environ Sci Health 29, 1423-1438.
    [Google Scholar]
  36. Silver, S. & Phung, L. T. ( 1996; ). Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50, 753-789.[CrossRef]
    [Google Scholar]
  37. Smith, R. M. & Martell, A. E. (1976). Critical Stability Constants, vol. 4, Inorganic Complexes. New York: Plenum.
  38. Spark, K. M., Wells, J. D. & Johnson, B. B. ( 1997; ). The interaction of a humic acid with heavy metals. Aust J Soil Res 35, 89-101.[CrossRef]
    [Google Scholar]
  39. Svehla, G. (1996). Vogel’s Qualitative Inorganic Analysis, 7th edn. Harlow: Longman Group.
  40. White, C. & Gadd, G. M. ( 1996; ). Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiology 142, 2197-2205.[CrossRef]
    [Google Scholar]
  41. White, C. & Gadd, G. M. ( 1998; ). Reduction of metal cations and oxyanions by anaerobic and metal-resistant microorganisms: chemistry, physiology, and potential for the control and bioremediation of toxic metal pollution. In Extremophiles, Microbial Life in Extreme Environments, pp. 233-254. Edited by K. Horikoshi & W. D. Grant. New York: Wiley-Liss.
  42. White, C., Sharman, A. K. & Gadd, G. M. ( 1998; ). An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16, 572-575.[CrossRef]
    [Google Scholar]
  43. Widdel, F. & Hansen, T. A. (1991). The dissimilatory sulphate- and sulphur-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 583–624. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  44. Widdel, F. & Pfennig, N. ( 1981; ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments – description of Desulfobacter postgatei gen-nov, sp-nov. Arch Microbiol 129, 395-400.[CrossRef]
    [Google Scholar]
  45. Zinkevich, V., Bogdarina, I., Kang, H., Hill, M. A. W., Tapper, R. & Beech, I. B. ( 1996; ). Characterization of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int Biodeterior Biodegrad 37, 163-172.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-10-2987
Loading
/content/journal/micro/10.1099/00221287-145-10-2987
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error