Polarography was used to measure the copper-binding ability of culture filtrates from a range of sulphate-reducing bacteria (SRB), including pure cultures and environmental isolates. Of those tested, was shown to have the greatest copper-binding capacity and this organism was used for further experiments. Extracellular copper- and zinc-binding activities of culture filtrates from batch cultures increased over time and reached a maximum after 10 d growth. The culture filtrate was shown to bind copper reversibly and zinc irreversibly. Twelve-day-old culture filtrates were shown to have a copper-binding capacity of 364±033 μmol ml with a stability constant, log , of 568±064 (=4). The metal-binding compound was partially purified from culture growth media by dichloromethane extraction followed by HPLC using an acetonitrile gradient.


Article metrics loading...

Loading full text...

Full text loading...



  1. Barnes, L. J., Janssen, F. J., Scheeren, P. J. H., Versteegh, J. H. & Koch, R. O. (1992). Simultaneous microbial removal of sulfate and heavy-metals from waste-water. Trans Inst Min Metall Sect C 101, C183-189. [Google Scholar]
  2. Beech, I. B. & Cheung, C. W. S. (1995). Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int Biodeterior Biodegrad 35, 59-72.[CrossRef] [Google Scholar]
  3. van den Berg, C. M. G. (1982). Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2. 1. Theory. Mar Chem 11, 307-322.[CrossRef] [Google Scholar]
  4. van den Berg, C. M. G. (1995). Evidence for organic complexation of iron in seawater. Mar Chem 50, 139-157.[CrossRef] [Google Scholar]
  5. van den Berg, C. M. G. & Donat, J. R. (1992). Determination and data evaluation of copper complexation by organic ligands in sea water using cathodic stripping voltammetry at varying detection windows. Anal Chim Acta 257, 281-291.[CrossRef] [Google Scholar]
  6. Beveridge, T. J. (1986). The immobilisation of soluble metals by bacterial walls. Biotechnol Bioeng Symp 16, 127-139. [Google Scholar]
  7. Beveridge, T. J., Hughes, M. N., Lee, H., Leung, K. T., Poole, R. K., Savvaidis, I., Silver, S. & Trevors, J. T. (1997). Metal–microbe interactions: contemporary approaches. Adv Microb Physiol 38, 177-243. [Google Scholar]
  8. Birch, L. & Bachofen, R. (1990). Complexing agents from microorganisms. Experientia 46, 827-834.[CrossRef] [Google Scholar]
  9. Bradford, M. B. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef] [Google Scholar]
  10. Bulman, R. A. (1978). Chemistry of plutonium and the transuranics in the biosphere. Struct Bonding 34, 39-77. [Google Scholar]
  11. Burgstaller, W. & Schinner, F. (1993). Leaching of metals with fungi. J Biotechnol 27, 91-116.[CrossRef] [Google Scholar]
  12. Crumbliss, A. L. (1991). Aqueous solution equilibrium and kinetic studies of iron siderophore and model siderophore complexes. In CRC Handbook of Microbial Iron Chelates, pp. 177-233. Edited by G. Winkelmann. Boca Raton, FL: CRC Press.
  13. Eide, D. J. (1998). The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18, 441-469.[CrossRef] [Google Scholar]
  14. Ensley, B. D. & Suflita, J. M. (1995). Metabolism of environmental contaminants by mixed and pure cultures of sulphate-reducing bacteria. In Sulphate-Reducing Bacteria, pp. 293-332. Edited by L. L. Barton. New York: Plenum.
  15. Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41, 47-92. [Google Scholar]
  16. Gadd, G. M. & White, C. (1993). Microbial treatment of metal pollution – a working biotechnology? Trends Biotechnol 11, 353-359.[CrossRef] [Google Scholar]
  17. Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. M. (1986). Hydrogen ion buffers for biological research. Biochemistry 5, 467-474. [Google Scholar]
  18. Guerinot, M. L. (1994). Microbial iron transport. Annu Rev Microbiol 48, 743-772.[CrossRef] [Google Scholar]
  19. Hansen, T. A. (1993). Carbon metabolism in sulphate-reducing bacteria. In The Sulphate-Reducing Bacteria: Contemporary Perspectives, pp. 21-40. Edited by J. M. Odom & R. Singleton. New York: Springer.
  20. Hao, O. J., Chen, J. M., Huang, L. & Buglass, R. L. (1996). Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26, 155-187.[CrossRef] [Google Scholar]
  21. Harwood-Sears, V. & Gordon, A. S. (1990). Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus. Appl Environ Microbiol 56, 1327-1332. [Google Scholar]
  22. Howe, R., Evans, R. L. & Ketteridge, S. W. (1997). Copper-binding proteins in ectomycorrhizal fungi. New Phytol 135, 123-131.[CrossRef] [Google Scholar]
  23. Hughes, M. N. & Poole, R. K. (1989).Metals and Micro-organisms. London: Chapman & Hall.
  24. Lewis, B. L., Holt, P. D., Taylor, S. W., Wilhelm, S. W., Trick, C. G., Butler, A. & Luther, G. W. (1995). Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Mar Chem 50, 179-188.[CrossRef] [Google Scholar]
  25. Lide, D. R. (1995).CRC Handbook of Chemistry and Physics, 76th edn. Boca Raton, FL: CRC Press.
  26. Lund, W. (1986). Electrochemical methods and their limitations for the determination of metal species in natural waters. In The Importance of Chemical Speciation in Environmental Processes, pp. 533-561. Edited by M. Bernhard, P. B. Brinckman & P. J. Sadler. Berlin: Springer.
  27. Neilands, J. B. (1981). Microbial iron compounds. Annu Rev Biochem 50, 715-731.[CrossRef] [Google Scholar]
  28. Nurnberg, H. W. (1984). Potentialities of voltammetry for the study of physiochemical aspects of heavy metal complexation in natural waters. In Complexation of Trace Metals in Natural Waters, pp. 1-16. Edited by C. J. M. Kramer & J. C. Duinker. The Hague: Junk Publishers.
  29. Postgate, J. R. (1984).The Sulphate-Reducing Bacteria. Cambridge: Cambridge University Press.
  30. Rauser, W. E. (1995). Phytochelatins and related peptides. Plant Physiol 109, 1141-1149.[CrossRef] [Google Scholar]
  31. Rayner, M. H. & Sadler, P. J. (1989). Cadmium accumulation and resistance mechanisms in bacteria. In Metal–Microbe Interactions, pp. 39-49. Edited by R. K. Poole & G. M. Gadd. Oxford: IRL Press.
  32. Ruzic, I. (1982). Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Anal Chim Acta 140, 99-113.[CrossRef] [Google Scholar]
  33. Sayer, J. A. & Gadd, G. M. (1997). Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 101, 653-661.[CrossRef] [Google Scholar]
  34. Schreiber, D. R., Millero, F. J. & Gordon, A. S. (1990). Production of an extracellular copper-binding compound by the heterotrophic marine bacterium Vibrio alginolyticus. Mar Chem 28, 275-284.[CrossRef] [Google Scholar]
  35. Shuman, L. M. (1994). Chelate and pH effects on aluminum determined by differential pulse polarography and plant root bioassay. J Environ Sci Health 29, 1423-1438. [Google Scholar]
  36. Silver, S. & Phung, L. T. (1996). Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50, 753-789.[CrossRef] [Google Scholar]
  37. Smith, R. M. & Martell, A. E. (1976).Critical Stability Constants, vol. 4, Inorganic Complexes. New York: Plenum.
  38. Spark, K. M., Wells, J. D. & Johnson, B. B. (1997). The interaction of a humic acid with heavy metals. Aust J Soil Res 35, 89-101.[CrossRef] [Google Scholar]
  39. Svehla, G. (1996).Vogel’s Qualitative Inorganic Analysis, 7th edn. Harlow: Longman Group.
  40. White, C. & Gadd, G. M. (1996). Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiology 142, 2197-2205.[CrossRef] [Google Scholar]
  41. White, C. & Gadd, G. M. (1998). Reduction of metal cations and oxyanions by anaerobic and metal-resistant microorganisms: chemistry, physiology, and potential for the control and bioremediation of toxic metal pollution. In Extremophiles, Microbial Life in Extreme Environments, pp. 233-254. Edited by K. Horikoshi & W. D. Grant. New York: Wiley-Liss.
  42. White, C., Sharman, A. K. & Gadd, G. M. (1998). An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16, 572-575.[CrossRef] [Google Scholar]
  43. Widdel, F. & Hansen, T. A. (1991). The dissimilatory sulphate- and sulphur-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 583–624. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  44. Widdel, F. & Pfennig, N. (1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments – description of Desulfobacter postgatei gen-nov, sp-nov. Arch Microbiol 129, 395-400.[CrossRef] [Google Scholar]
  45. Zinkevich, V., Bogdarina, I., Kang, H., Hill, M. A. W., Tapper, R. & Beech, I. B. (1996). Characterization of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int Biodeterior Biodegrad 37, 163-172.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error