1887

Abstract

In , nucleosides are readily taken up from the growth medium and metabolized. The key enzymes in nucleoside catabolism are nucleoside phosphorylases, phosphopentomutase, and deoxyriboaldolase. The characterization of two closely linked loci, and , which encode phosphopentomutase (Drm) and guanosine (inosine) phosphorylase (PupG), respectively, is reported here. When expressed in mutant backgrounds, and confer phosphopentomutase and purine-nucleoside phosphorylase activity. Northern blot and enzyme analyses showed that and form a dicistronic operon. Both enzymes are induced when nucleosides are present in the growth medium. Using mutants deficient in nucleoside catabolism, it was demonstrated that the low-molecular-mass effectors of this induction most likely were deoxyribose 5-phosphate and ribose 5-phosphate. Both Drm and PupG activity levels were higher when succinate rather than glucose served as the carbon source, indicating that the expression of the operon is subject to catabolite repression. Primer extension analysis identified two transcription initiation signals upstream of ; both were utilized in induced and non-induced cells. The nucleoside-catabolizing system in serves to utilize the base for nucleotide synthesis while the pentose moiety serves as the carbon source. When added alone, inosine barely supports growth of . This slow nucleoside catabolism contrasts with that of , which grows rapidly on a nucleoside as a carbon source. When inosine was added with succinate or deoxyribose, however, a significant increase in growth was observed in . The findings of this study therefore indicate that the system for nucleoside catabolism differs greatly from the well-studied system in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-10-2957
1999-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/10/1452957a.html?itemId=/content/journal/micro/10.1099/00221287-145-10-2957&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef] [Google Scholar]
  2. Beaman, T. C., Hitchins, A. D., Ochi, K., Vasantha, N., Endo, T. & Freese, E. (1983). Specificity and control of uptake of purines and other compounds in Bacillus subtilis. J Bacteriol 156, 1107-1117. [Google Scholar]
  3. Christiansen, L. C., Schou, S., Nygaard, P. & Saxild, H. H. (1997). Xanthine metabolism in Bacillus subtilis: characterization of the xpt–pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 179, 2540-2550. [Google Scholar]
  4. Engelbrecht, H. L. (1972). Time course of purine-nucleoside phosphorylase occurrence in sporulation of Bacillus cereus. J Bacteriol 111, 33-36. [Google Scholar]
  5. Ferrari, F. A., Nguyen, A., Lang, D. & Hoch, J. A. (1983). Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol 154, 1513-1515. [Google Scholar]
  6. Gardner, R. & Kornberg, A. (1967). Biochemical studies of bacterial sporulation and germination. J Biol Chem 242, 2383-2388. [Google Scholar]
  7. Grigorieva, T. M. & Sukhodolets, V. V. (1979). Regulation of pyrimidine nucleoside phosphorylase activity in Bacillus thuringiensis var. galleriae: the induction of the enzyme activity at different growth stages of bacterial cells. Genetica 15, 1169-1176. [Google Scholar]
  8. Hammer-Jespersen, K. (1983). Nucleoside catabolism. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms, pp. 203-258. Edited by A. Munch-Petersen. New York: Academic Press.
  9. Hammer-Jespersen, K., Munch-Petersen, A., Nygaard, P. & Schwartz, M. (1971). Induction of enzymes involved in the catabolism of deoxyribonucleosides and ribonucleosides in Escherichia coli K12. Eur J Biochem 19, 533-538.[CrossRef] [Google Scholar]
  10. Ipata, P. L., Sgarrella, F., Catalani, R. & Tozzi, M. G. (1983). Induction of phosphoribomutase in Bacillus cereus growing on nucleosides. Biochim Biophys Acta 755, 253-256.[CrossRef] [Google Scholar]
  11. Jensen, K. F. (1978). Two purine-nucleoside phosphorylases in Bacillus subtilis: purification and some properties of the adenosine-specific phosphorylase. Biochim Biophys Acta 523, 346-356. [Google Scholar]
  12. Jensen, K. F. & Nygaard, P. (1975). Purine-nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium: purification and some properties. Eur J Biochem 51, 253-265.[CrossRef] [Google Scholar]
  13. Jochimsen, B., Nygaard, P. & Vestergaard, T. (1975). Location on the chromosome of Escherichia coli of genes governing purine metabolism. Mol Gen Genet 143, 85-91.[CrossRef] [Google Scholar]
  14. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors (1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef] [Google Scholar]
  15. Liu, H. M., Chak, K. F. & Piggot, P. J. (1982). Isolation and characterization of a recombinant plasmid carrying a functional part of the Bacillus subtilis spoIIA locus. J Gen Microbiol 128, 2805-2812. [Google Scholar]
  16. Miwa, Y., Nagura, K., Eguchi, S., Fukuda, H., Deutsher, J. & Fujita, Y. (1997). Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolic-responsive elements. Mol Microbiol 23, 1203-1213.[CrossRef] [Google Scholar]
  17. Munch-Petersen, A. & Mygind, B. (1983). Transport of nucleic acids precursors. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms, pp. 95-148. Edited by A. Munch-Petersen. New York: Academic Press.
  18. Neuhard, J. & Nygaard, P. (1987). Purines and pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1, pp. 445–473. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  19. Nicholson, W. L. & Setlow, P. (1990). Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus, pp. 391-429. Edited by C. R. Harwood & S. M. Cutting. Chichester: Wiley.
  20. Nygaard, P. (1993). Purine and pyrimidine salvage pathways. In Bacillus subtilis and Other Gram-Positive Bacteria, pp. 359-378. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  21. Nygaard, P., Duckert, P. & Saxild, H. H. (1996). Role of adenine deaminase in purine salvage and nitrogen metabolism, and characterization of the ade gene in Bacillus subtilis. J Bacteriol 178, 846-853. [Google Scholar]
  22. O’Reilly, M., Woodson, K., Dowds, B. C. & Devine, K. (1994). The citrulline biosynthetic operon, argC–F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. Mol Microbiol 11, 87-98.[CrossRef] [Google Scholar]
  23. Penn, M. D., Thireos, G. & Greer, H. (1984). Temporal analysis of general control of amino acid biosynthesis in Saccharomyces cerevisiae: role of positive regulatory genes in initiation and maintenance of mRNA derepression. Mol Cell Biol 4, 520-528. [Google Scholar]
  24. Piggot, P. J. & Curtis, C. A. M. (1987). Analysis of the regulation of gene expression during Bacillus subtilis sporulation by manipulation of the copy number of spo–lacZ fusions. J Bacteriol 169, 1260-1265. [Google Scholar]
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Saxild, H. H., Jacobsen, J. H. & Nygaard, P. (1995). Functional analysis of the Bacillus subtilis purT gene encoding formate-dependent glycinamide ribonucleotide transformylase. Microbiology 141, 2211-2218.[CrossRef] [Google Scholar]
  27. Saxild, H. H., Andersen, L. N. & Hammer, K. (1996).dra–nupC–pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J Bacteriol 178, 424-434. [Google Scholar]
  28. Schuch, R. & Piggot, P. J. (1994). The dacF–spoIIA operon of Bacillus subtilis encoding σF, is autoregulated. J Bacteriol 176, 4104-4110. [Google Scholar]
  29. Seeger, C., Poulsen, C. & Dandanell, G. (1995). Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli. J Bacteriol 177, 5506-5516. [Google Scholar]
  30. Senesi, S., Cercignani, G., Freer, G., Batoni, G., Barnini, S. & Ota, F. (1991). Structural and stereospecific requirements for the nucleoside-triggered germination of Bacillus cereus spores. J Gen Microbiol 137, 399-404.[CrossRef] [Google Scholar]
  31. Shimotsu, H. & Henner, D. J. (1986). Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Gene 43, 85-94.[CrossRef] [Google Scholar]
  32. Smith, K., Bayer, M. E. & Youngman, P. (1993). Physical and functional characterization of the Bacillus subtilis spoIIM gene. J Bacteriol 175, 3607-3617. [Google Scholar]
  33. Tinoco, I.Jr, Borer, P. N., Dengler, B. & Levine, M. D. (1973). Improved estimation of secondary structure in ribonucleic acids. Nature 246, 40-41. [Google Scholar]
  34. Valentin-Hansen, P., Hammer, K., Larsen, J. E. L. & Svendsen, I. (1984). The internal regulated promoter of the deo operon of Escherichia coli K-12. Nucleic Acids Res 12, 5211-5224.[CrossRef] [Google Scholar]
  35. Valentin-Hansen, P., Søgaard-Andersen, L. & Pedersen, H. (1996). A flexible partnership: the CytR anti-activator and the cAMP-CRP activator protein, comrades in transcription control. Mol Microbiol 20, 461-466.[CrossRef] [Google Scholar]
  36. Wu, J.-J., Howard, M. G. & Piggot, P. J. (1989). Regulation of transcription of the Bacillus subtilis spoIIA locus. J Bacteriol 171, 692-698. [Google Scholar]
  37. Zeng, X. & Saxild, H. H. (1999). Identification and characterization of a DeoR-specific operator sequence essential for induction of dra–nupC–pdp operon expression in Bacillus subtilis. J Bacteriol 181, 1719-1727. [Google Scholar]
  38. Zhang, L., Higgins, M. L., Piggot, P. J. & Karow, M. (1996). Analysis of the role of prespore gene expression in the compartmentalization of mother cell-specific gene expression during sporulation in Bacillus subtilis. J Bacteriol 178, 2813-2817. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-10-2957
Loading
/content/journal/micro/10.1099/00221287-145-10-2957
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error