sp. strain 109 produces a unique lipase (LipL) which efficiently catalyses intramolecular transesterification of ω-hydroxyesters to form macrocyclic lactones. production of enzymically active LipL requires lipase modulator protein (LimL), which functions as a molecular chaperone for the correct folding of LipL. However, previous work has shown that LipL forms a tight complex with LimL and the resulting LipL–LimL complex is only partially active, suggesting an additional mechanism that facilitates the dissociation of the complex to form enzymically active LipL. In the present work, a low- compound (lipase activation factor, LAF) was found in sp. strain 109 that when added to the LipL–LimL complex resulted in the activation of LipL. Ca ions also enhanced lipase activity, but the instantaneous activation by Ca was different from the gradual and time-dependent activation by LAF, indicating the novel nature of this compound. LAF passed through an ultrafiltration membrane with an cut-off of 3000 and showed an apparent of 330±30 on Superdex Peptide gel-filtration chromatography. Treatment of the LipL–LimL complex with LAF liberated free active LipL, indicating that LAF was necessary to dissociate the LipL–LimL complex.


Article metrics loading...

Loading full text...

Full text loading...



  1. Frenken, L. G. J., Bos, J. W., Visser, C., Muller, W., Tommassen, J. & Verrips, C. T. (1993a). An accessory gene, lipB, required for the secreted lipase of Pseudomonas glumae lipase. Mol Microbiol 9, 579-589.[CrossRef] [Google Scholar]
  2. Frenken, L. G. J., Groot, A., Tommassen, J. & Verrips, C. T. (1993b). Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae. Mol Microbiol 9, 591-599.[CrossRef] [Google Scholar]
  3. Hirayama, N. O., Yoshikawa, K., Nishioka, T. & Oda, J. (1993). Lipase from Pseudomonas aeruginosa. Eur J Biochem 215, 239-246.[CrossRef] [Google Scholar]
  4. Hobson, A. H., Buchley, C. M., Aamand, J. L., Jørgensen, S. T., Diderichsen, B. & McConnell, D. J. (1993). Activation of bacterial lipase by its chaperone. Proc Natl Acad Sci USA 90, 5682-5686.[CrossRef] [Google Scholar]
  5. lhara, F., Kageyama, Y., Hirata, M., Nihira, T. & Yamada, Y. (1991). Purification, characterization, and molecular cloning of lactonizing lipase from Pseudomonas species. J Biol Chem 266, 18135-18140. [Google Scholar]
  6. lhara, F., Okamoto, I., Nihira, T. & Yamada, Y. (1992). Requirement in trans of the downstream limL gene for activation of lactonizing lipase from Pseudomonas sp. 109. J Ferment Bioeng 73, 337-342. [Google Scholar]
  7. lhara, F., Okamoto, I., Akao, K., Nihira, T. & Yamada, Y. (1995). Lipase modulator protein (LimL) of Pseudomonas sp. strain 109. J Bacteriol 177, 1254-1258. [Google Scholar]
  8. lizumi, T., Nakamura, K., Shimada, Y., Sugihara, A., Tominaga, Y. & Fukase, T. (1991). Cloning, nucleotide sequencing, and expression in Escherichia coli of a lipase and its activator genes from Pseudomonas sp. KWI-56. Agric Biol Chem 55, 2349-2357.[CrossRef] [Google Scholar]
  9. lizumi, T. & Fukase, T. (1994). Role of the gene encoding lipase activator from Pseudomonas sp. strain KWI-56 in in vitro activation of lipase. Biosci Biotechnol Biochem 58, 1023-1027.[CrossRef] [Google Scholar]
  10. Jørgensen, S. T., Skov, K. W. & Diderichsen, B. (1991). Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes. J Bacteriol 173, 559-567. [Google Scholar]
  11. Keller-Schierlein, W. (1973). Chemie der Makrolid-Antibiotica. Fortschr Chem Org Naturst 30, 313-460. [Google Scholar]
  12. Kok, R. G., van Thor, J. J., Nugteren-Roodzant, I. M., Vosman, B. & Hellingwerf, K. J. (1995). Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase. J Bacteriol 177, 3295-3307. [Google Scholar]
  13. Makita, A., Nihira, T. & Yamada, Y. (1987). Lipase catalysed synthesis of macrocyclic lactones in organic solvent. Tetrahedron Lett 28, 805-808.[CrossRef] [Google Scholar]
  14. Ogierman, M. A., Failarimo, A., Riess, T., Williams, S. G., Attridge, S. R. & Manning, P. A. (1997). Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region. J Bacteriol 179, 7072-7080. [Google Scholar]
  15. Siomi, M. C., Yoshikawa, K., Hirayama, N. O., Yamamoto, K., Sogabe, Y., Nakatani, T., Nishioka, T. & Oda, J. (1992). Purification, molecular cloning, and expression of lipase from Pseudomonas aeruginosa. Arch Biochem Biophys 296, 505-513.[CrossRef] [Google Scholar]
  16. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. (1990). Use of RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60-89. [Google Scholar]
  17. Wohlfarth, S. & Winkler, U. K. (1992). Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAO1. J Gen Microbiol 138, 1325-1335.[CrossRef] [Google Scholar]
  18. Wong, C. & Whitesides, G. M. (1994).Enzymes in Synthetic Organic Chemistry, pp. 70–108. Amsterdam: Elsevier.
  19. Zaks, A. & Klibanov, A. M. (1984). Enzymatic catalysis in organic media at 100 °C. Science 224, 1249-1251.[CrossRef] [Google Scholar]
  20. Zaks, A. & Klibanov, A. M. (1985). Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci USA 82, 3192-3196.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error