The site-specific integration of genetic elements may modulate thermostable protease production, a virulence factor in , the causative agent of ovine footrot Free

Abstract

The Gram-negative anaerobe is the causative agent of footrot in sheep. The authors have previously characterized two genetic elements, the () and elements, which integrate into the genome of . In the virulent strain A198 there are two copies of the element. One copy is integrated into the 3’ end of the gene, close to the aspartokinase () gene, and the second copy is integrated into the 3’ end of the gene, next to the polynucleotide phosphorylase () gene. In this study, a new genetic element was identified in the benign strain C305, the element, integrated into the 3’ end of the gene, next to . The element was found in most strains, both benign and virulent, which were examined, and was integrated into in most strains. Between the and genes, a gene (designated ), was identified whose predicted protein product has very high amino acid identity with RsmA from the plant pathogen . RsmA acts as a global repressor of pathogenicity in , by repressing the production of extracellular enzymes. In virulent strains of the element was found to be integrated next to , and either the or element was integrated next to . By contrast, all but one of the benign strains had at one or both of these two positions, and the one exception had neither nor at one position. The loss of the element from the virulent strain 1311 resulted in loss of thermostable protease activity, a virulence factor in . A model for virulence is proposed whereby integration of the and genetic elements modulates virulence by altering the expression of and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-10-2845
1999-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/10/1452845a.html?itemId=/content/journal/micro/10.1099/00221287-145-10-2845&mimeType=html&fmt=ahah

References

  1. Abremski, K. E. & Hoess, R. H. (1992). Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng 5, 87-91.[CrossRef] [Google Scholar]
  2. Alifano, P., Bruni, C. B. & Carlomagno, M. S. (1994). Control of mRNA processing and decay in prokaryotes. Genetica 94, 157-172.[CrossRef] [Google Scholar]
  3. Argos, P., Landy, A., Abremski, K. & 9 other authors. (1986). The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5, 433–440. [Google Scholar]
  4. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1989).Current Protocols in Molecular Biology. New York: Wiley.
  5. Beveridge, W. I. B. (1941). Footrot in sheep: a transmissible disease due to infection with Fusiformis nodosus. CSIRO Bull 140, 1-40. [Google Scholar]
  6. Bik, E. M., Gouw, R. D. & Mooi, F. R. (1996). DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J Clin Microbiol 34, 1453-1461. [Google Scholar]
  7. Billington, S. J., Sinistaj, M., Cheetham, B. F., Ayres, A., Moses, E. K., Katz, M. E. & Rood, J. I. (1996). Identification of a native Dichelobacter nodosus plasmid and implications for the evolution of the vap regions. Gene 172, 111-116.[CrossRef] [Google Scholar]
  8. Bloomfield, G. A., Whittle, G., McDonagh, M. B., Katz, M. E. & Cheetham, B. F. (1997). Analysis of sequences flanking the vap regions of Dichelobacter nodosus: evidence for multiple integration events, a killer system, and a new genetic element. Microbiology 143, 553-562.[CrossRef] [Google Scholar]
  9. Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M., Rappuoli, R. & Covacci, A. (1996).cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93, 14648-14653.[CrossRef] [Google Scholar]
  10. Cheetham, B. F., Tattersall, D. B., Bloomfield, G. A., Rood, J. I. & Katz, M. E. (1995). Identification of a bacteriophage-related integrase gene in a vap region of the Dichelobacter nodosus genome. Gene 162, 53-58.[CrossRef] [Google Scholar]
  11. Cui, Y., Chatterjee, A., Liu, Y., Dumenyo, C. K. & Chatterjee, A. K. (1995). Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J Bacteriol 177, 5108-5115. [Google Scholar]
  12. Depiazzi, L. J. & Richards, R. B. (1985). Motility in relation to virulence of Bacteroides nodosus. Vet Microbiol 10, 107-116.[CrossRef] [Google Scholar]
  13. Depiazzi, L. J., Henderson, J. & Penhale, W. J. (1990). Measurement of protease thermostability, twitching motility and colony size of Bacteroides nodosus. Vet Microbiol 22, 353-363.[CrossRef] [Google Scholar]
  14. Dorman, C. J. (1995). DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. Microbiology 141, 1271-1280.[CrossRef] [Google Scholar]
  15. Green, R. S. (1985). A method to differentiate between virulent and benign isolates of Bacteroides nodosus based on the thermal stability of their extracellular proteinases. NZVet J 33, 11-13. [Google Scholar]
  16. Gulig, P. A., Caldwell, A. L. & Chiodo, V. A. (1992). Identification, genetic analysis and DNA sequence of a 7·8-kb virulence region of the Salmonella typhimurium virulence plasmid. Mol Microbiol 6, 1395-1411.[CrossRef] [Google Scholar]
  17. Hawley, D. K. & McClure, W. R. (1983). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11, 2237-2255.[CrossRef] [Google Scholar]
  18. Hu, P., Elliott, J., McCready, P., Skowronski, E., Garnes, J., Kobayashi, A., Brubaker, R. R. & Garcia, E. (1998). Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol 180, 5192-5202. [Google Scholar]
  19. Katayama, S., Dupuy, B., Garnier, T. & Cole, S. T. (1995). Rapid expansion of the physical and genetic map of the chromosome of Clostridium perfringens CPN50. J Bacteriol 177, 5680-5685. [Google Scholar]
  20. Katz, M. E., Howarth, P. M., Yong, W. K., Riffkin, G. G., Depiazzi, L. J. & Rood, J. I. (1991). Identification of three gene regions associated with virulence in Dichelobacter nodosus, the causative agent of ovine footrot. J Gen Microbiol 137, 2117-2124.[CrossRef] [Google Scholar]
  21. Katz, M. E., Strugnell, R. A. & Rood, J. I. (1992). Molecular characterization of a genomic region associated with virulence in Dichelobacter nodosus. Infect Immun 60, 4586-4592. [Google Scholar]
  22. Katz, M. E., Wright, C. L., Gartside, T. S., Cheetham, B. F., Doidge, C. V., Moses, E. K. & Rood, J. I. (1994). Genetic organization of the duplicated vap region of the Dichelobacter nodosus genome. J Bacteriol 176, 2663-2669. [Google Scholar]
  23. Li, Z. & Deutscher, M. P. (1994). The role of individual exoribonucleases in processing at the 3′ end of Escherichia coli tRNA precursors. J Biol Chem 269, 6064-6071. [Google Scholar]
  24. Liu, M. Y., Yang, H. & Romeo, T. (1995). The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 177, 2663-2672. [Google Scholar]
  25. Moses, E. K., Good, R. T., Sinistaj, M., Billington, S. J., Langford, C. J. & Rood, J. I. (1995). A multiple site-specific inversion model for the control of Omp1 phase and antigenic variation in Dichelobacter nodosus. Mol Microbiol 17, 183-196.[CrossRef] [Google Scholar]
  26. Mukherjee, A., Cui, Y., Liu, Y., Dumenyo, C. K. & Chatterjee, A. K. (1996). Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia colicsrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology 142, 427-434.[CrossRef] [Google Scholar]
  27. Ott, M. (1993). Dynamics of the bacterial genome: deletions and integrations as mechanisms of bacterial virulence modulation. Zentbl Bakteriol 278, 457-468.[CrossRef] [Google Scholar]
  28. Pullinger, G. D. & Lax, A. J. (1992). A Salmonella dublin virulence plasmid locus that affects bacterial growth under nutrient-limited conditions. Mol Microbiol 6, 1631-1643.[CrossRef] [Google Scholar]
  29. Ritter, A., Blum, G., Emody, L., Kerenyi, M., Bock, A., Neuhier, B., Rabsch, W., Scheutz, F. & Hacker, J. (1995). tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol Microbiol 17, 109-121.[CrossRef] [Google Scholar]
  30. Rood, J. I., Howarth, P. A., Haring, V. & 7 other authors. (1996). Comparison of gene probe and conventional methods for the diagnosis of ovine footrot. Vet Microbiol 52, 127–142.[CrossRef] [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Sun, J., Inouye, M. & Inouye, S. (1991). Association of a retroelement with a P4-like cryptic prophage (retronphage phiR73) integrated into the selenocystyl tRNA gene of E. coli. J Bacteriol 173, 4171-4181. [Google Scholar]
  33. Tian, Q. B., Ohnishi, M., Tabuchi, A. & Terawaki, Y. (1996). A new plasmid-encoded killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem Biophys Res Commun 220, 280-284.[CrossRef] [Google Scholar]
  34. Zagaglia, C., Casalino, M., Colonna, B., Conti, C., Calconi, A. & Nicoletti, M. (1991). Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. Infect Immun 59, 792-799. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-10-2845
Loading
/content/journal/micro/10.1099/00221287-145-10-2845
Loading

Data & Media loading...

Most cited Most Cited RSS feed