1887

Abstract

TA441 degrades 3-(3-hydroxyphenyl)propionate (3HPP) via the pathway. A gene cluster required for degradation of 3HPP was cloned from strain TA441 and sequenced. The genes encoding six catabolic enzymes, a flavin-type hydroxylase (), extradiol dioxygenase (), 2-keto-4-pentenoate hydratase (), acetaldehyde dehydrogenase (acylating) (), 4-hydroxy-2-ketovalerate aldolase () and the cleavage compound hydrolase (), were found in this cluster, encoded in this order. and were separated by two genes, and , which were not necessary for growth on 3HPP. The gene , encoding a putative transcriptional activator of the IclR family, was located adjacent to in the opposite orientation. Disruption of the or genes affected growth on 3HPP or -3-hydroxycinnamate. The and gene products showed high specificity for 3-(2,3-dihydroxyphenyl)propionate (DHPP) and the cleavage compound produced from DHPP, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-10-2813
1999-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/10/1452813a.html?itemId=/content/journal/micro/10.1099/00221287-145-10-2813&mimeType=html&fmt=ahah

References

  1. Arai, H., Akahira, S., Ohishi, T., Maeda, M. & Kudo, T. (1998). Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144, 2895-2903.[CrossRef] [Google Scholar]
  2. Barnes, M. R., Duetz, W. A. & Williams, P. A. (1997). A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. J Bacteriol 179, 6145-6153. [Google Scholar]
  3. Blakley, E. R. & Simpson, F. J. (1964). The microbial metabolism of cinnamic acid. Can J Microbiol 10, 175-185.[CrossRef] [Google Scholar]
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef] [Google Scholar]
  5. Burlage, R. S., Hooper, S. W. & Sayler, G. S. (1989). The TOL (pWW0) catabolic plasmid. Appl Environ Microbiol 55, 1323-1328. [Google Scholar]
  6. Burlingame, R. & Chapman, P. J. (1983). Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli. J Bacteriol 155, 113-121. [Google Scholar]
  7. Chung, S.-Y., Maeda, M., Song, E., Horikoshi, K. & Kudo, T. (1994). A gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain TA421, isolated from a termite ecosystem. Biosci Biotechnol Biochem 58, 2111-2113.[CrossRef] [Google Scholar]
  8. DiMarco, A. A., Averhoff, B. & Ornston, L. N. (1993). Identification of the transcriptional activator pobR and characterization of its role in the expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase in Acinetobacter calcoaceticus. J Bacteriol 175, 4499-4506. [Google Scholar]
  9. Eltis, L. D. & Bolin, J. T. (1996). Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178, 5930-5937. [Google Scholar]
  10. Eltis, L. D., Hofmann, B., Hecht, H.-J., Lünsdorf, H. & Timmis, K. N. (1993). Purification and crystalization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J Biol Chem 268, 2727-2732. [Google Scholar]
  11. Erickson, B. D. & Mondello, F. J. (1992). Nucleotide sequencing and transcriptional mapping of genes encoding biphenyl dioxygenase, a multicomponent PCB-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 174, 2903-2912. [Google Scholar]
  12. Ferrández, A., Garcı́a, J. L. & Dı́az, E. (1997). Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. J Bacteriol 179, 2573-2581. [Google Scholar]
  13. Frantz, B. & Chakrabarty, A. M. (1987). Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc Natl Acad Sci USA 84, 4460-4464.[CrossRef] [Google Scholar]
  14. Harayama, S. & Rekik, M. (1990). The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Mol Gen Genet 221, 113-120.[CrossRef] [Google Scholar]
  15. Harwood, C. S., Nichols, N. N., Kim, M. K., Ditty, J. L. & Parales, R. E. (1994). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176, 6479-6488. [Google Scholar]
  16. Hofer, B., Backhaus, S. & Timmis, K. N. (1994). The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 144, 9-16.[CrossRef] [Google Scholar]
  17. Hofer, B., Eltis, L. D., Dowling, D. N. & Timmis, K. N. (1993). Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130, 47-55.[CrossRef] [Google Scholar]
  18. Inouye, S., Asai, Y., Nakazawa, A. & Nakazawa, T. (1986). Nucleotide sequence of a DNA segment promoting transcription in Pseudomonas putida. J Bacteriol 166, 739-745. [Google Scholar]
  19. Kowalchuk, G. A., Hartnett, G. B., Benson, A., Houghton, J. E., Ngai, K.-L. & Ornston, L. N. (1994). Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene 146, 23-30.[CrossRef] [Google Scholar]
  20. Kulakov, L. A., Delcroix, V. A., Larkin, M. J., Ksenzenko, V. N. & Kulakova, A. N. (1998). Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains. Microbiology 144, 955-963.[CrossRef] [Google Scholar]
  21. Lau, P. C. K., Bergeron, H., Labbe, D., Wang, Y., Brousseau, R. & Gibson, D. T. (1994). Sequence and expression of the todGIH genes involved in the last three steps of toluene degradation by Pseudomonas putida F1. Gene 146, 7-13.[CrossRef] [Google Scholar]
  22. McMillan, D. J., Mau, M. & Walker, M. J. (1998). Characterisation of the urease gene cluster in Bordetella bronchiseptica. Gene 208, 243-251.[CrossRef] [Google Scholar]
  23. Maeda, M., Chung, S. Y., Song, E. & Kudo, T. (1995). Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl Environ Microbiol 61, 549-555. [Google Scholar]
  24. van der Meer, J. R., Eggen, R. I., Zehnder, A. J. & de Vos, W. M. (1991). Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol 173, 2425-2434. [Google Scholar]
  25. Möbus, E., Jahn, M., Schmid, R., Jahn, D. & Maser, E. (1997). Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J Bacteriol 179, 5951-5955. [Google Scholar]
  26. Noda, Y., Nishikawa, S., Shiozuka, K. & 7 other authors (1990). Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 172, 2704–2709. [Google Scholar]
  27. Nurk, A., Kasak, L. & Kivisaar, M. (1991). Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. Gene 102, 13-18.[CrossRef] [Google Scholar]
  28. Perkins, E. J., Gordon, M. P., Caceres, O. & Lurquin, P. F. (1990). Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172, 2351-2359. [Google Scholar]
  29. Prieto, M. A., Dı́az, E. & Garcı́a, J. L. (1996). Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. J Bacteriol 178, 111-120. [Google Scholar]
  30. Roper, D. I. & Cooper, R. A. (1990). Subcloning and nucleotide sequence of the 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase gene from Escherichia coli C. FEBS Lett 275, 53-57.[CrossRef] [Google Scholar]
  31. Roper, D. I., Stringfellow, J. M. & Cooper, R. A. (1995). Sequence of the hpcC and hpcG genes of the meta-fission homoprotocatechuic acid pathway of Escherichia coli C: nearly 40% amino-acid identity with the analogous enzymes of the catechol pathway. Gene 156, 47-51.[CrossRef] [Google Scholar]
  32. Salomone, J.-Y., Crouzet, P., De Ruffray, P. & Otten, L. (1996). Characterization and distribution of tartrate utilization genes in the grapevine pathogen Agrobacterium vitis. Mol Plant Microbe Interact 9, 401-408.[CrossRef] [Google Scholar]
  33. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Shingler, V., Powlowski, J. & Marklund, U. (1992). Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol 174, 711-724. [Google Scholar]
  35. Simon, R. (1984). High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196, 413-420.[CrossRef] [Google Scholar]
  36. Spence, E. L., Kawamukai, M., Sanvoisin, J., Braven, H. & Bugg, T. D. (1996). Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J Bacteriol 178, 5249-5256. [Google Scholar]
  37. Tamaoka, J., Ha, D.-M. & Komagata, K. (1987). Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int J Syst Bacteriol 37, 52-59.[CrossRef] [Google Scholar]
  38. Valentin, H. E., Zwingmann, G., Schonebaum, A. & Steinbuchel, A. (1995). Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. Eur J Biochem 227, 43-60.[CrossRef] [Google Scholar]
  39. Zylstra, G. J. & Gibson, D. T. (1989). Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264, 14940-14946. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-10-2813
Loading
/content/journal/micro/10.1099/00221287-145-10-2813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error