1887

Abstract

Lanosterol 14α-demethylase (14DM) is the target of the azole antifungals, and alteration of the 14DM sequence leading to a decreased affinity of the enzyme for azoles is one of several potential mechanisms for resistance to these drugs in . In order to identify such alterations the authors investigated a collection of 19 clinical isolates demonstrating either frank resistance (MICs ≤32 μg ml) or dose-dependent resistance (MICs 8–16 μg ml) to fluconazole. In cell-free extracts from four isolates, including the Darlington strain ATCC 64124, sensitivity of sterol biosynthesis to inhibition by fluconazole was greatly reduced, suggesting that alterations in the activity or affinity of the 14DM could contribute to resistance. Cloning and sequencing of the 14DM gene from these isolates revealed 12 different alterations (two to four per isolate) leading to changes in the deduced amino acid sequence. Five of these mutations have not previously been reported. To demonstrate that these alterations could affect fungal susceptibility to azoles, the 14DM genes from one sensitive and three resistant strains were tagged at the carboxyl terminus with a c-myc epitope and expressed in under control of the endogenous promoter. Transformants receiving 14DM genes from resistant strains had fluconazole MICs up to 32-fold higher than those of transformants receiving 14DM from a sensitive strain, although Western blot analysis indicated that the level of expressed 14DM was similar in all transformants. Amino acid substitutions in the 14DM gene from the Darlington strain also conferred a strong cross-resistance to ketoconazole. In conclusion, multiple genetic alterations in 14DM, including several not previously reported, can affect the affinity of the enzyme for azoles and contribute to resistance of clinical isolates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-10-2715
1999-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/10/1452715a.html?itemId=/content/journal/micro/10.1099/00221287-145-10-2715&mimeType=html&fmt=ahah

References

  1. Alarco, A. M., Balan, I., Talibi, D., Mainville, N. & Raymond, M. (1997). AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1, encoding a transporter of the major facilitator superfamily. J Biol Chem 272, 19304-19313.[CrossRef] [Google Scholar]
  2. Albertson, G. D., Niimi, M., Cannon, R. D. & Jenkinson, H. F. (1996). Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40, 2835-2841. [Google Scholar]
  3. Aoyama, Y., Yoshida, Y., Sonoda, Y. & Sato, Y. (1989). Deformylation of 32-oxo-24,25-dihydrolanosterol by the purified cytochrome P-45014DM (lanosterol 14α-demethylase) from yeast, evidence confirming the intermediate step of lanosterol 14α-demethylase. J Biol Chem 264, 18502-18505. [Google Scholar]
  4. Barchiesi, F., Difrancesco, L. F., Compagnucci, P., Arzeni, D., Giacometti, A. & Scalise, G. (1998). In-vitro interaction of terbinafine with amphotericin B, fluconazole and itraconazole against clinical isolates of Candida albicans. J Antimicrob Chemother 41, 59-65. [Google Scholar]
  5. Becker, D. M. & Guarente, L. (1991). High-efficiency transformation of yeast by electroporation. Methods Enzymol 194, 182-187. [Google Scholar]
  6. Boscott, P. E. & Grant, G. H. (1994). Modeling cytochrome P450 14α-demethylase (Candida albicans) from P450cam. J Mol Graphics 12, 185-192.[CrossRef] [Google Scholar]
  7. Chen, C., Kalb, V. F., Turi, T. G. & Loper, J. C. (1988). Primary structure of the cytochrome P450 lanosterol 14α-demethylase gene from Candida tropicalis. DNA 7, 617-626.[CrossRef] [Google Scholar]
  8. Denning, D. W., Baily, G. G. & Hood, S. V. (1997). Azole resistance in Candida. Eur J Clin Microbiol Infect Dis 16, 261-280.[CrossRef] [Google Scholar]
  9. Doignon, F., Aigle, M. & Ribereaugayon, P. (1993). Resistance to imidazoles and triazoles in Saccharomyces cerevisiae as a new dominant marker. Plasmid 30, 224-233.[CrossRef] [Google Scholar]
  10. Favre, B. & Ryder, N. S. (1996). Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents. Antimicrob Agents Chemother 40, 443-447. [Google Scholar]
  11. Favre, B. & Ryder, N. S. (1997a). Cloning and expression of squalene epoxidase from the pathogenic yeast Candida albicans. Gene 189, 119-126.[CrossRef] [Google Scholar]
  12. Favre, B. & Ryder, N. S. (1997b). Differential inhibition of fungal and mammalian squalene epoxidases by the benzylamine SDZ SBA 586 in comparison with the allylamine terbinafine. Arch Biochem Biophys 340, 265-269.[CrossRef] [Google Scholar]
  13. Feczcko, J. M. (1992). 17. Overview of fluconazole. In Recent Progress in Antifungal Therapy, pp. 191-201. Edited by H. Yamaguchi, G. S. Kobayashi & H. Takahashi. New York: Marcel Dekker.
  14. Galgiani, J. N., Bartlett, M. S., Ghannoum, M. A., Espinell-Ingroff, A., Lancaster, M. V., Odds, F. C., Pfaller, M. A., Rex, J. H. & Rinaldi, M. G. (1995).Reference Method forBroth Dilution Antifungal Susceptibility Testing of Yeasts; Tentative Standard. Wayne, PA: NCCLS.
  15. Ghannoum, M. A., Rex, J. H. & Galgiani, J. N. (1996). Susceptibility testing of fungi: current status of correlation of in vitro data with clinical outcome. J Clin Microbiol 34, 489-495. [Google Scholar]
  16. Goldway, M., Teff, D., Schmidt, R., Oppenheim, A. B. & Koltin, Y. (1995). Multidrug resistance in Candida albicans: disruption of the BENr gene. Antimicrob Agents Chemother 39, 422-426.[CrossRef] [Google Scholar]
  17. Hitchcock, C. A. (1993). 15. Chemistry and mode of action of fluconazole. In Cutaneous Antifungal Agents. Selected Compounds in Clinical Practice and Development, pp. 183-197. Edited by J. W. Rippon & R. A. Fromtling. New York: Marcel Dekker.
  18. Hitchcock, C. A., Dickinson, K., Brown, S. B., Evans, E. G. V. & Adams, D. J. (1989). Purification and properties of cytochrome P-450-dependent 14α-sterol demethylase from Candida albicans. Biochem J 263, 573-579. [Google Scholar]
  19. Hitchcock, C. A., Dickinson, K., Brown, S. B., Evans, E. G. V. & Adams, D. J. (1990). Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem J 266, 475-480. [Google Scholar]
  20. Ishida, N., Aoyama, Y., Hatanaka, R. & 10 other authors (1988). A single amino acid substitution converts cytochrome P45014DM to an inactive form, cytochrome P450SG1: complete primary structures deduced from cloned DNAs. Biochem Biophys Res Commun 155, 317–323.[CrossRef] [Google Scholar]
  21. Joseph-Horne, T., Hollomon, D., Loeffler, R. S. T. & Kelly, S. L. (1995). Altered P450 activity associated with direct selection for fungal azole resistance. FEBS Lett 374, 174-178.[CrossRef] [Google Scholar]
  22. Kalb, V. F., Loper, J. C., Dey, C. R., Woods, C. W. & Sutter, T. R. (1986). Isolation of a cytochrome P-450 structural gene from Saccharomyces cerevisiae. Gene 45, 237-245.[CrossRef] [Google Scholar]
  23. Kelly, S. L., Arnoldi, A. & Kelly, D. E. (1993). Molecular genetic analysis of azole antifungal mode of action. Biochem Soc Trans 21, 1034-1038. [Google Scholar]
  24. Kelly, S. L., Lamb, D. C., Kelly, D. E., Manning, N. J., Loeffler, J., Hebart, H., Schumacher, U. & Einsele, H. (1997). Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Δ(5,6)-desaturation. FEBS Lett 400, 80-82.[CrossRef] [Google Scholar]
  25. Lai, M. H. & Kirsch, D. R. (1989). Nucleotide sequence of cytochrome P450 L1A1 (lanosterol 14α-demethylase) from Candida albicans. Nucleic Acids Res 17, 804.[CrossRef] [Google Scholar]
  26. Lamb, D. C., Corran, A., Baldwin, B. C., Kwonchung, J. & Kelly, S. L. (1995). Resistant P45051A1 activity in azole antifungal tolerant Cryptococcus neoformans from AIDS patients. FEBS Lett 368, 326-330.[CrossRef] [Google Scholar]
  27. Lamb, D. C., Kelly, D. E., Schunck, W. H., Shyadehi, A. Z., Akhtar, M., Lowe, D. J., Baldwin, B. C. & Kelly, S. L. (1997). The mutation T315A in Candida albicans sterol 14α-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 272, 5682-5688.[CrossRef] [Google Scholar]
  28. Law, D., Moore, C. B., Wardle, H. M., Ganguli, L. A., Keaney, M. G. L. & Denning, D. W. (1994). High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother 34, 659-668.[CrossRef] [Google Scholar]
  29. Loeffler, J., Kelly, S. L., Hebart, H., Schumacher, U., Lassflorl, C. & Einsele, H. (1997). Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol Lett 151, 263-268.[CrossRef] [Google Scholar]
  30. Lopez-Ribot, J. L., Mcatee, R. K., Lee, L. N., Kirkpatrick, W. R., White, T. C., Sanglard, D. & Patterson, T. F. (1998). Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42, 2932-2937. [Google Scholar]
  31. Marichal, P., Gorrens, J., Coene, M. C., Lejeune, L. & Vandenbossche, H. (1995). Origin of differences in susceptibility of Candida krusei to azole antifungal agents. Mycoses 38, 111-117.[CrossRef] [Google Scholar]
  32. Miyazaki, H., Miyazaki, Y., Geber, A., Parkinson, T., Hitchcock, C., Falconer, D. J., Ward, D. J., Marsden, K. & Bennett, J. E. (1998). Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata. Antimicrob Agents Chemother 42, 1695-1701. [Google Scholar]
  33. Moran, G. P., Sanglard, D., Donnelly, S. M., Shanley, D. B., Sullivan, D. J. & Coleman, D. C. (1998). Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 42, 1819-1830. [Google Scholar]
  34. Orozco, A. S., Higginbotham, L. M., Hitchcock, C. A., Parkinson, T., Falconer, D., Ibrahim, A. S., Ghannoum, M. A. & Filler, S. G. (1998). Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother 42, 2645-2649. [Google Scholar]
  35. Parkinson, T., Falconer, D. J. & Hitchcock, C. A. (1995). Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob Agents Chemother 39, 1696-1699.[CrossRef] [Google Scholar]
  36. Philippsen, P., Stotz, A. & Scherf, C. (1991). DNA of Saccharomyces cerevisiae. Methods Enzymol 194, 169-182. [Google Scholar]
  37. Poulos, T. L., Finzel, B. C. & Howard, A. J. (1987). High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195, 687-700.[CrossRef] [Google Scholar]
  38. Prasad, R., Dewergifosse, P., Goffeau, A. & Balzi, E. (1995). Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27, 320-329.[CrossRef] [Google Scholar]
  39. Rex, J. H., Rinaldi, M. G. & Pfaller, M. A. (1995). Resistance of Candida species to fluconazole. Antimicrob Agents Chemother 39, 1-8.[CrossRef] [Google Scholar]
  40. Rex, J. H., Pfaller, M. A., Lancaster, M., Odds, F. C., Bolmstrom, A. & Rinaldi, M. G. (1996). Quality control guidelines for National Committee for clinical laboratory standards – recommended broth macrodilution testing of ketoconazole and itraconazole. J Clin Microbiol 34, 816-817. [Google Scholar]
  41. Rinaldi, M. G. (1993). 1. Biology and pathogenicity of Candida species. In Candidiasis. Pathogenesis, Diagnosis, and Treatment, pp. 1-20. Edited by G. P. Bodey. New York: Raven Press.
  42. Ryder, N. S. (1985). Specific inhibition of fungal sterol biosynthesis by SF 86-327, a new allylamine antimycotic agent. Antimicrob Agents Chemother 27, 252-256.[CrossRef] [Google Scholar]
  43. Ryder, N. S. (1987). Squalene epoxidase as the target of antifungal allylamines. Pestic Sci 21, 281-288.[CrossRef] [Google Scholar]
  44. Ryder, N. S. & Favre, B. (1997). Antifungal activity and mechanism of action of terbinafine. Rev Contemp Pharmacother 8, 275-287. [Google Scholar]
  45. Ryder, N. S., Seidl, G. & Troke, P. F. (1984). Effect of the antimycotic drug naftifine on growth of and sterol biosynthesis in Candida albicans. Antimicrob Agents Chemother 25, 483-487.[CrossRef] [Google Scholar]
  46. Ryder, N. S., Wagner, S. & Leitner, I. (1998). In vitro activities of terbinafine against cutaneous isolates of Candida albicans and other pathogenic yeasts. Antimicrob Agents Chemother 42, 1057-1061. [Google Scholar]
  47. Ryley, J. F., Wilson, R. G. & Barrett-Bee, K. J. (1984). Azole resistance in Candida albicans. Sabouraudia 22, 53-63.[CrossRef] [Google Scholar]
  48. Sanglard, D., Sengstag, C. & Seghezzi, W. (1993). Probing the membrane topology of Candida tropicalis cytochrome P450. Eur J Biochem 216, 477-485.[CrossRef] [Google Scholar]
  49. Sanglard, D., Kuchler, K., Ischer, F., Pagani, J. L., Monod, M. & Bille, J. (1995). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39, 2378-2386.[CrossRef] [Google Scholar]
  50. Sanglard, D., Ischer, F., Monod, M. & Bille, J. (1996). Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40, 2300-2305. [Google Scholar]
  51. Sanglard, D., Ischer, F., Monod, M. & Bille, J. (1997). Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143, 405-416.[CrossRef] [Google Scholar]
  52. Sanglard, D., Ischer, F., Koymans, L. & Bille, J. (1998). Amino acid substitutions in the cytochrome P-450 lanosterol 14 alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 42, 241-253.[CrossRef] [Google Scholar]
  53. Santos, M. A. S. & Tuite, M. F. (1995). The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 23, 1481-1486.[CrossRef] [Google Scholar]
  54. Shyadehi, A. Z., Lamb, D. C., Kelly, S. L., Kelly, D. E., Schunck, W. H., Wright, J. N., Corina, D. & Akhtar, M. (1996). The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14α-demethylase of Candida albicans (other names are: lanosterol 14α-demethylase, P-450(14DM), and CYP51). J Biol Chem 271, 12445-12450.[CrossRef] [Google Scholar]
  55. Sutter, T. R. & Loper, J. C. (1989). Disruption of Saccharomyces cerevisiae gene for NADPH-cytochrome P450 reductase causes increased sensitivity to ketoconazole. Biochem Biophys Res Commun 160, 1257-1266.[CrossRef] [Google Scholar]
  56. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994).clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef] [Google Scholar]
  57. Truan, G., Epinat, J. C., Rougeulle, C., Cullin, C. & Pompon, D. (1994). Cloning and characterization of a yeast cytochrome b5-encoding gene which suppresses ketoconazole hypersensitivity in a NADPH-P-450 reductase-deficient strain. Gene 142, 123-127.[CrossRef] [Google Scholar]
  58. Tumbarello, M., Caldarola, G., Tacconelli, E., Morace, G., Posteraro, B., Cauda, R. & Ortona, L. (1996). Analysis of the risk factors associated with the emergence of azole resistant oral candidosis in the course of HIV infection. J Antimicrob Chemother 38, 691-699.[CrossRef] [Google Scholar]
  59. Vanden Bossche, H. & Koymans, L. (1998). Cytochromes P450 in fungi. Mycoses 41, Suppl. 1, 32–38.[CrossRef] [Google Scholar]
  60. Vanden Bossche, H. & Marichal, P. (1992). 3. Azole antifungals: mode of action. In Recent Progress in Antifungal Chemotherapy, pp. 25-40. Edited by H. Yamaguchi, G. S. Kobayashi & H. Takahashi. New York: Marcel Dekker.
  61. Vanden Bossche, H., Marichal, P., Gorrens, J., Bellens, D., Moereels, H. & Janssen, P. A. J. (1990). Mutation in cytochrome P-450-dependent 14α-demethylase results in decreased affinity for azole antifungals. Biochem Soc Trans 18, 56-59. [Google Scholar]
  62. Vanden Bossche, H., Marichal, P., Odds, F. C., Le Jeune, L. & Coene, M. C. (1992). Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 36, 2602-2610.[CrossRef] [Google Scholar]
  63. Vanden Bossche, H., Marichal, P. & Odds, F. C. (1994). Molecular mechanisms of drug resistance in fungi. Trends Microbiol 2, 393-400.[CrossRef] [Google Scholar]
  64. van Veen, H. W. & Konings, W. N. (1998). The ABC family of multidrug transporters in microorganisms. Biochim Biophys Acta 1365, 31-36.[CrossRef] [Google Scholar]
  65. Venkateswarlu, K., Denning, D. W., Manning, N. J. & Kelly, S. L. (1996). Reduced accumulation of drug in Candida krusei accounts for itraconazole resistance. Antimicrob Agents Chemother 40, 2443-2446. [Google Scholar]
  66. Venkateswarlu, K., Taylor, M., Manning, N. J., Rinaldi, M. G. & Kelly, S. L. (1997). Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 41, 748-751. [Google Scholar]
  67. Vergeres, G., Yen, T. S. B., Aggeler, J., Lausier, J. & Waskell, L. (1993). A model system for studying membrane biogenesis. Overexpression of cytochrome b5 in yeast results in marked proliferation of the intracellular membrane. J Cell Sci 106, 249-259. [Google Scholar]
  68. White, T. C. (1997a). Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41, 1482-1487. [Google Scholar]
  69. White, T. C. (1997b). The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14α demethylase in Candida albicans. Antimicrob Agents Chemother 41, 1488-1494. [Google Scholar]
  70. White, T. C., Marr, K. A. & Bowden, R. A. (1998). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11, 382-402. [Google Scholar]
  71. Yoshida, M. & Aoyama, Y. (1985). Interaction of azole fungicides with yeast cytochrome P-450 which catalyzes lanosterol 14α-demethylation. In In Vitro and In Vivo Evaluation of Antifungal Agents, pp. 123–134. Edited by K. Iwata & H. Vanden Bossche. Amsterdam: Elsevier.
  72. Zimmer, T., Vogel, F., Ohta, A., Takagi, M. & Schunck, W. H. (1997). Protein quality – a determinant of the intracellular fate of membrane-bound cytochromes P450 in yeast. DNA Cell Biol 16, 501-514.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-10-2715
Loading
/content/journal/micro/10.1099/00221287-145-10-2715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error