The genetic structure of enteric bacteria from Australian mammals Free

Abstract

A total of 246 isolates representing five species of the family , taken from a variety of Australian mammal species, were characterized using multi-locus enzyme electrophoresis. Genome diversity estimates varied significantly among species, with the sample exhibiting the lowest diversity and the sample the highest. Multi-locus linkage disequilibrium estimates revealed that alleles were non-randomly associated in all five species samples, but the magnitude of the estimates differed significantly among species. had the lowest linkage disequilibrium estimate and the largest. Molecular analyis of variance was used to determine the extent to which population structure explained the observed genetic variation in a species. Two population levels were defined: the taxonomic family of the host from which the isolate was collected and the geographical locality where the host was collected. The amount of explained variation varied from 0% for to 22% for . Host locality explained a significant amount of the genetic variation in the (12%), (5%), (17%) and (22%) samples. Host family explained a significant fraction of the variation in (6%) (7%) and (20%). Estimates of effective population size for all five species, based on the probability that two randomly chosen isolates will be identical, failed to reveal any relationship between the effective population size and the genetic diversity of a species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-10-2673
1999-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/10/1452673a.html?itemId=/content/journal/micro/10.1099/00221287-145-10-2673&mimeType=html&fmt=ahah

References

  1. Atwood, K. C., Schneider, L. K. & Ryan, F. J. (1951). Periodic selection in Escherichia coli. Genetics 37, 146-155. [Google Scholar]
  2. Bennet, A. F. & Lenski, R. E. (1993). Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherchia coli. Evolution 47, 1-12.[CrossRef] [Google Scholar]
  3. Bisercic, M., Feutrier, J. Y. & Reeves, P. R. (1991). Nucleotide sequences of the gnd genes from nine natural isolates of Escherichia coli: evidence of intragenic recombination as a contributing factor in the evolution of the polymorphic gnd locus. J Bacteriol 173, 3894-3900. [Google Scholar]
  4. Brown, A. D. H., Feldman, M. W. & Nevo, E. (1980). Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96, 523-536. [Google Scholar]
  5. Caugant, D. A., Levin, B. R. & Selander, R. K. (1981). Genetic diversity and temporal variation in the E. coli populations of a human host. Genetics 98, 467-490. [Google Scholar]
  6. Caugant, D. A., Levin, B. R. & Selander, R. K. (1984). Distribution of multilocus genotypes of Escherichia coli within and between host families. J Hyg 92, 377-384.[CrossRef] [Google Scholar]
  7. Clemens, W. A., Richardson, B. J. & Baverstock, P. R. (1989). Biogeography and phylogeny of the Metatheria. In Fauna of Australia: Mammalia, vol. 1B, pp. 527-548. Edited by D. W. Walton & B. J. Richardson. Canberra: Australian Government Publishing Service.
  8. Cohan, F. M. (1994). Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol 9, 175-180.[CrossRef] [Google Scholar]
  9. Cohan, F. M. (1995). Does recombination constrain neutral divergence among bacterial taxa? Evolution 49, 164-175.[CrossRef] [Google Scholar]
  10. Drake, J. W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88, 7160-7164.[CrossRef] [Google Scholar]
  11. Dubose, R. F., Dykhuizen, D. E. & Hartl, D. L. (1988). Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. Proc Natl Acad Sci USA 85, 7036-7040.[CrossRef] [Google Scholar]
  12. Dykhuizen, D. E. & Green, L. (1986). DNA sequence variation, DNA phylogeny, and recombination in E. coli. Genetics 113, S71. [Google Scholar]
  13. Ewing, W. H. (1986).Edwards and Ewing’s Identification of Enterobacteriaceae, 4th edn. New York: Elsevier.
  14. Excoffier, L., Smouse, P. E. & Quattro, J. M. (1992). Analysis of molecular varience inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491. [Google Scholar]
  15. Gordon, D. M. (1997). The genetic structure of Escherichia coli populations in feral house mice. Microbiology 143, 2039-2046.[CrossRef] [Google Scholar]
  16. Gordon, D. M. & FitzGibbon, F. (1999). The distribution of enteric bacteria from Australian mammals: host and geographical effects. Microbiology 145, 2663-2671. [Google Scholar]
  17. Gordon, D. M., Wexler, M., Reardon, T. B. & Murphy, P. J. (1995). The genetic structure of Rhizobium populations. Soil Biol Biochem 27, 491-499.[CrossRef] [Google Scholar]
  18. Guttman, D. S. (1997). Recombination and clonality in populations of Escherichia coli. Trends Ecol Evol 12, 16-22. [Google Scholar]
  19. Guttman, D. S. & Dykuizen, D. E. (1994). Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266, 1380-1383.[CrossRef] [Google Scholar]
  20. Hartl, D. L. & Dykhuizen, D. E. (1984). The population genetics of Escherichia coli. Annu Rev Genet 18, 31-68.[CrossRef] [Google Scholar]
  21. Haubold, B. & Rainey, P. B. (1996). Genetic and ecotypic structure of a fluorescent Pseudomonas population. Mol Ecol 5, 747-761.[CrossRef] [Google Scholar]
  22. Hebert, P. D. N. & Beaton, M. J. (1993).Methodologies for Allozyme Analysis Using Cellulose Acetate Electrophoresis. Beaumont, TX: Helena Laboratories.
  23. Howard, D. J., Bush, G. L. & Breznak, J. A. (1985). The evolutionary significance of bacteria associated with Rhagoletis. Evolution 39, 405-417.[CrossRef] [Google Scholar]
  24. Lenski, R. E., Mongold, J. A., Sneigowski, P. D., Travisano, M., Vasi, F., Gerrish, P. J. & Schmidt, T. M. (1998). Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? Antonie Leeuwenhoek 73, 35-47.[CrossRef] [Google Scholar]
  25. Levin, B. R. (1981). Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99, 1-23. [Google Scholar]
  26. Maynard Smith, J. (1991). The population genetics of bacteria. Proc R Soc Lond Ser B 245, 37-41.[CrossRef] [Google Scholar]
  27. Maynard Smith, J., Smith, N. H., O’Rourke, M. & Spratt, B. G. (1993). How clonal are bacteria? Proc Natl Acad Sci USA 90, 4384-4388.[CrossRef] [Google Scholar]
  28. Milkman, R. (1973). Electrophoretic variation in Escherichia coli from natural sources. Science 182, 1024-1026.[CrossRef] [Google Scholar]
  29. Milkman, R. & Bridges, M. M. (1993). Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. Genetics 133, 455-468. [Google Scholar]
  30. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583-590. [Google Scholar]
  31. Nelson, K. N. & Selander, R. K. (1994). Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenae gene (gnd) in enteric bacteria. Proc Natl Acad Sci USA 91, 10227-10231.[CrossRef] [Google Scholar]
  32. Power, D. A. & McCuen, P. L. (1988).Manual of BBL Products and Laboratory Procedures, 6th edn. Cockeysville, MD: Becton Dickinson Microbial Systems.
  33. Pupo, G. M. & Richardson, B. J. (1995). Biochemical genetics of a natural population of Escherichia coli: seasonal changes in alleles and haplotypes. Microbiology 141, 1037-1044.[CrossRef] [Google Scholar]
  34. Savageau, M. A. (1983).Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 122, 732-744.[CrossRef] [Google Scholar]
  35. Schmidt-Nielsen, K. (1991).Animal Physiology, 5th edn. Cambridge: Cambridge University Press.
  36. Selander, R. K. & Levin, B. R. (1980). Genetic diversity and structure in Escherichia coli. Science 210, 545-547.[CrossRef] [Google Scholar]
  37. Selander, R. K., Caugant, D. A. & Whittam, T. S. (1987). Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1625–1648. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  38. Souza, V., Nguyen, T. T., Hudson, R. R., Piñero, D. & Lenski, R. E. (1993). Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? Proc Natl Acad Sci USA 89, 8389-8393. [Google Scholar]
  39. Strahan, R. (1983).Complete Book of Australian Mammals. Melbourne: Angus & Roberston Publishers.
  40. Wernegreen, J. J., Harding, E. E. & Riley, M. A. (1997).Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum. Proc Natl Acad Sci 94, 5483-5488.[CrossRef] [Google Scholar]
  41. Whittam, T. S., Ochman, H. & Selander, R. K. (1983). Geographic components of linkage disequilibrium in natural populations of Escherichia coli. Mol Biol Evol 1, 67-83. [Google Scholar]
  42. Wright, S. (1943). Isolation by distance. Genetics 28, 114-138. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-10-2673
Loading
/content/journal/micro/10.1099/00221287-145-10-2673
Loading

Data & Media loading...

Most cited Most Cited RSS feed