Bacteria of the family were isolated from 642 mammalian hosts, representing 16 families and 79 species, collected from throughout Australia. was the most common of the 24 enteric species recovered and represented almost half of the isolates. Association analysis revealed that most other species of bacteria were less likely to be recovered from hosts in which was present. The composition of the enteric community of a host was found to be determined by both the taxonomic family to which the host belonged and the geographical area from which the host was collected. Hosts collected from the northern areas of Queensland and the Northern Territory had more diverse enteric communities than hosts collected from New South Wales or Western Australia. Hosts of the families Petauridae and Vespertilionidae had more diverse enteric communities than did members of the Macropodidae or Phalangeridae. The probability of occurrence of , , , , and in a host was found to vary with respect to host family and/or host locality. The non-random distribution of these species demonstrates the presence of extensive population structure and may suggest the existence of adaptations specific to both the primary and secondary habitats of these enteric bacteria.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bettelhelm, K. A., Cooke, E. M., O’Farrell, S. O. & Shooter, R. A. (1977). The effect of diet on intestinal Escherichia coli. J Hyg 79, 43-45.[CrossRef] [Google Scholar]
  2. Bisercic, M., Feutrier, J. Y. & Reeves, P. R. (1991). Nucleotide sequences of the gnd genes from nine natural isolates of Escherichia coli: evidence of intragenic recombination as a contributing factor in the evolution of the polymorphic gnd locus. J Bacteriol 173, 3894-3900. [Google Scholar]
  3. Caugant, D. A., Levin, B. R. & Selander, R. K. (1981). Genetic diversity and temporal variation in the E. coli populations of a human host. Genetics 98, 467-490. [Google Scholar]
  4. Caugant, D. A., Levin, B. R. & Selander, R. K. (1984). Distribution of multilocus genotypes of Escherichia coli within and between host families. J Hyg 92, 377-384.[CrossRef] [Google Scholar]
  5. Caugant, D. A., Bøvre, D., Gaustad, P., Bryn, K., Holten, E., Høiby, E. A. & Frøholm, L. O. (1986). Multilocus genotypes determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers. J Gen Microbiol 132, 641-652. [Google Scholar]
  6. Cohan, F. M. (1994). Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol 9, 175-180.[CrossRef] [Google Scholar]
  7. Cooke, E. M., Shooter, R. A., Kumar, P. J., Rousseau, S. A. & Foulkes, A. L. (1970). Hospital food as a possible source of Escherichia coli in patients. Lancet 28, 436-437. [Google Scholar]
  8. Dubose, R. F., Dykhuizen, D. E. & Hartl, D. L. (1988). Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. Proc Natl Acad Sci USA 85, 7036-7040.[CrossRef] [Google Scholar]
  9. Dykhuizen, D. E. & Green, L. (1986). DNA sequence variation, DNA phylogeny, and recombination in E. coli. Genetics 113, S71. [Google Scholar]
  10. Ewing, W. H. (1986).Edwards and Ewing’s Identification of Enterobacteriaceae, 4th edn. New York: Elsevier.
  11. Gordon, D. M. (1997). The genetic structure of Escherichia coli populations in feral house mice. Microbiology 143, 2039-2046.[CrossRef] [Google Scholar]
  12. Gordon, D. M. & Lee, J. (1999). The genetic structure of enteric bacteria from Australian mammals. Microbiology 145, 2673-2682. [Google Scholar]
  13. Gordon, D. M., Wexler, M., Reardon, T. B. & Murphy, P. J. (1995). The genetic structure of Rhizobium populations. Soil Biol Biochem 27, 491-499.[CrossRef] [Google Scholar]
  14. Guttman, D. S. (1997). Recombination and clonality in populations of Escherichia coli. Trends Ecol Evol 12, 16-22. [Google Scholar]
  15. Guttman, D. S. & Dykuizen, D. E. (1994). Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266, 1380-1383.[CrossRef] [Google Scholar]
  16. Haubold, B., Travisano, M., Rainey, P. B. & Hudson, R. R. (1998). Detecting linkage disequilibrium in bacterial populations. Genetics 150, 1341-1348. [Google Scholar]
  17. Holmes, B., Costas, M., Thaker, T. & Stevens, M. (1994). Evaluation of two BBL Crystal systems for identification of some clinically important gram-negative bacteria. J Clin Microbiol 32, 2221-2224. [Google Scholar]
  18. Howard, D. J., Bush, G. L. & Breznak, J. A. (1985). The evolutionary significance of bacteria associated with Rhagoletis. Evolution 39, 405-417.[CrossRef] [Google Scholar]
  19. Johnson, C. N. (1998). Rarity in the tropics: latitudinal gradients in distribution and abundance in Australian mammals. J Anim Ecol 67, 689-698.[CrossRef] [Google Scholar]
  20. Ludwig, J. A. & Reynolds, J. F. (1988).Statistical Ecology. New York: Wiley.
  21. Madigan, M. T., Martinko, J. M. & Parker, J. (1997).Biology of Microorganisms. pp. 785–812. Upper Saddle River, NY: Prentice Hall.
  22. Maynard Smith, J. (1991). The population genetics of bacteria. Proc R Soc Lond Ser B 245, 37-41.[CrossRef] [Google Scholar]
  23. Maynard Smith, J., Smith, N. H., O’Rourke, M. & Spratt, B. G. (1993). How clonal are bacteria? Proc Natl Acad Sci USA 90, 4384-4388.[CrossRef] [Google Scholar]
  24. Milkman, R. (1973). Electrophoretic variation in Escherichia coli from natural sources. Science 182, 1024-1026.[CrossRef] [Google Scholar]
  25. Milkman, R. & Bridges, M. M. (1993). Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. Genetics 133, 455-468. [Google Scholar]
  26. Musser, J. M., Granoff, D. M., Pattison, P. E. & Selander, R. K. (1985). A population genetic framework for the study of invasive diseases caused by serotype b strains of Haemophilus influenzae. Proc Natl Acad Sci USA 82, 5078-5082.[CrossRef] [Google Scholar]
  27. Musser, J. M., Hewlett, E. L., Peppler, M. S. & Selander, R. K. (1986). Genetic diversity and relationships in populations of Bordetella spp. J Bacteriol 166, 230-237. [Google Scholar]
  28. Nelson, K. N. & Selander, R. K. (1994). Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci USA 91, 10227-10231.[CrossRef] [Google Scholar]
  29. Pedersen, J. C. & Jacobsen, C. S. (1993). Fate of Enterobactercloacae JP120 and Alcaligenes eutrophus AE0106(pR0101) in soil during water stress: effects on culturability and viability. Appl Environ Microbiol 59, 1560-1564. [Google Scholar]
  30. Platz, S. (1980). Studies on survival of Salmonella typhimurium in different types of soil under outdoor climatic conditions. Zentbl Bakteriol Mikrobiol Hyg Ser B 171, 256-268. [Google Scholar]
  31. Power, D. A. & McCuen, P. L. (1988).Manual of BBL Products and Laboratory Procedures, 6th edn, Cockeysville, MD: Becton Dickinson Microbial Systems.
  32. Pupo, G. M. & Richardson, B. J. (1995). Biochemical genetics of a natural population of Escherichia coli: seasonal changes in alleles and haplotypes. Microbiology 141, 1037-1044.[CrossRef] [Google Scholar]
  33. Savageau, M. A. (1983).Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 122, 732-744.[CrossRef] [Google Scholar]
  34. Schmidt-Nielsen, K. (1997).Animal Physiology, 5th edn. Cambridge: Cambridge University Press.
  35. Selander, R. K. & Levin, B. R. (1980). Genetic diversity and structure in Escherichia coli. Science 210, 545-547.[CrossRef] [Google Scholar]
  36. Selander, R. K., Korhonen, T. K., Vaisanen-Rhen, V., Williams, P. H., Pattison, P. E. & Caugant, D. A. (1986). Genetic relationships and clonal structure of strains of Escherichia coli causing neonatal septicaemia and meningitis. Infect Immun 52, 213-222. [Google Scholar]
  37. Selander R. K., Caugant, D. A. & Whittam, T. S. (1987). Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1625–1648. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  38. Selander, R. K., Beltran, P., Smith, N. H. & 7 other authors (1990). Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun 58, 2262–2275. [Google Scholar]
  39. Sokal, R. R. & Rohlf, F. J. (1981).Biometry, 2nd edn. New York: W. H. Freeman.
  40. Souza, V., Nguyen, T. T., Hudson, R. R., Piñero, D. & Lenski, R. E. (1993). Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? Proc Natl Acad Sci USA 89, 8389-8393. [Google Scholar]
  41. Strahan, R. (1983).Complete Book of Australian Mammals. Melbourne: Angus & Roberston Publishers.
  42. Warner, A. C. I. (1981). Rate of passage of digesta through the gut of mammals and birds. Nutr Abstr Rev 51B, 789-825. [Google Scholar]
  43. Whittam, T. S., Ochman, H. & Selander, R. K. (1983a). Multilocus genetic structure in natural populations of Escherichia coli. Proc Natl Acad Sci USA 80, 1751-1755.[CrossRef] [Google Scholar]
  44. Whittam, T. S., Ochman, H. & Selander, R. K. (1983b). Geographic components of linkage disequilibrium in natural populations of Escherichia coli. Mol Biol Evol 1, 67-83. [Google Scholar]
  45. Whittam, T. S., Wolfe, M. L., Wachsmuth, I. K., Ørskov, F., Ørskov, I. & Wilson, R. A. (1993). Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhoea. Infect Immun 61, 1619-1629. [Google Scholar]
  46. Withers, P. C. (1992). Digestion. In Comparative Physiology, pp. 897–947. New York: Saunders Publishing.

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error