1887

Abstract

Bacteria of the genus are able to colonize plant roots. Using the glucuronidase (GUS) reporter system, various mutants, including mutants affected in chemotactic motility or extracellular polysaccharide biosynthesis, were investigated for their capacity to initiate wheat root colonization at the root hair zones. Only non-flagellated mutants and a generally non-chemotactic mutant exhibited a strongly reduced colonization ability as compared to the wild-type. No role of the calcofluor-binding polysaccharide in primary wheat root colonization could be observed. This is the first report demonstrating directly, by using different motility mutants, the requirement of bacterial motility in the establishment of the -plant root association.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-9-2599
1998-09-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/9/mic-144-9-2599.html?itemId=/content/journal/micro/10.1099/00221287-144-9-2599&mimeType=html&fmt=ahah

References

  1. Barak R., Nur I., Okon Y., Henis Y. 1982; Aerotactic response of Azospirillum brasilense. . J Bacterial 152:643–649
    [Google Scholar]
  2. Bashan Y. 1986a; Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil.. J Gen Microbiol 132:3407–3414
    [Google Scholar]
  3. Bashan Y. 1986b; Enhancement of wheat root colonization and plant development by Azospirillum brasilense Cd following temporary depression of the rhizosphere microflora.. Appl Environ Microbiol 51:1067–1071
    [Google Scholar]
  4. Croes C. 1993 Analysis of the Azosprillum brasilense pRHICO plasmid: identification of functions involved in plant root interaction PhD thesis Catholic University of Leuven;
    [Google Scholar]
  5. Croes C., Van Bastelaere E., Dedercq E., Eyers M., Vander-leyden J., Michiels K. 1991; Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid.. Plasmid 26:83–93
    [Google Scholar]
  6. Croes C.L., Moens S., van Bastelaere E., Vanderleyden J., Michiels K.W. 1993; The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots.. J Gen Microbiol 139:2261–2269
    [Google Scholar]
  7. De Troch P., Philip-Hollingsworth S., Orgambide G., Dazzo F.B., Vanderleyden J. 1992; Analysis of extracellular poly-saccharides isolated from Azospirillum brasilense wild type and mutant strains.. Symbiosis 13:229–241
    [Google Scholar]
  8. De Troch P., Keijers V., Vanderleyden J. 1994; Sequence analysis of the Azospirillum brasilense exoB gene, encoding UDP- glucose 4´-epimerase.. Gene 144:143–144
    [Google Scholar]
  9. De Troch P., Petersen D.J., Vanderleyden J. 1995; Poly-saccharide synthesis in Azospirillum brasilense. . In: Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology pp. 97–103 Edited by Fendrik I., del Gallo M., Vanderleyden J., de Zamaroczy M. Springer: Berlin & Heidelberg;
    [Google Scholar]
  10. Franche C., Elmerich C. 1981; Physiological properties and plasmid content of several strains of Azospirillum brasilense and Azospirillum lipoferum. . Ann Inst Pasteur Microbiol 132:3–18
    [Google Scholar]
  11. Hall P.G., Krieg N.R. 1983; Swarming of Azospirillum brasilense on solid media.. Can J Microbiol 29:1592–1594
    [Google Scholar]
  12. Heinrich D., Hess D. 1985; Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants.. Can J Microbiol 31:26–31
    [Google Scholar]
  13. Jefferson R.A. 1987; Assaying chimeric genes in plants: the GUS gene fusion system.. Plant Mol Biol Rep 5:387–405
    [Google Scholar]
  14. Lavigne C. 1987; Contribution à I’étude du systéme racinaire du bananier. Mise au point de rhizotrons et premiers resultats.. Fruits 42:265–271
    [Google Scholar]
  15. Leigh J.A., Signer E.R., Walker G.C. 1985; Exopoly-saccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.. Proc Natl Acad Sci USA 82:6231–6235
    [Google Scholar]
  16. Long S.R., Reed J.W., Himawan J., Walker G.C. 1988; Genetic analysis of a cluster of genes required for the synthesis of the Calcofluor-binding exopolysaccharide of Rhizobium meliloti. . J Bacterial 170:4231–4248
    [Google Scholar]
  17. Lopez-de-Victoria G., Lovell C.R. 1993; Chemotaxis of Azospirillum species to aromatic compounds.. Appl Environ Microbiol 59:2951–2955
    [Google Scholar]
  18. Mandimba G., Heulin T., Bally R., Guckert A., Balandreau J. 1986; Chemotaxis of free-living nitrogen fixing bacteria towards maize mucilage.. Plant Soil 90:129–136
    [Google Scholar]
  19. Matthysse A.G. 1983; Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.. J Bacterial 154:906–915
    [Google Scholar]
  20. Matthysse A.G., Holmes K.V., Gurlitz R.H.G. 1981; Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells.. J Bacteriol 145:583–595
    [Google Scholar]
  21. Michiels K., Vanderleyden J., Van Gool A., Signer E. 1988; Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutants.. J Bacteriol 170:5401–5404
    [Google Scholar]
  22. Michiels K., Verreth C., Vanderleyden J. 1990; Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants that are affected in flocculation.. J Appl Bacteriol 69:705–711
    [Google Scholar]
  23. Michiels K.W., Croes C.L., Vanderleyden J. 1991; Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots.. J Gen Microbiol 137:2241–2246
    [Google Scholar]
  24. Miller J.H. 1972 Experiments in Molecular Genetics pp. 354–358 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Moens S., Michiels K., Keijers V., Van Leuven F., Vanderleyden J. 1995; Cloning, sequencing and phenotypic analysis of lafl, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7.. J Bacteriol 177:5419–5426
    [Google Scholar]
  26. Okon Y., Labandera-Gonzalez C. 1994; Agronomic appli-cations of Azospirillum: an evaluation of 20 years worldwide field inoculation experiments.. Soil Biol Biochem 26:1591–1601
    [Google Scholar]
  27. Okon Y., Vanderleyden J. 1997; Root-associated Azospirillum species can stimulate plants.. ASM News 63:366–370
    [Google Scholar]
  28. Okon Y., Gakmakgi L., Nur I., Chet I. 1980; Aerotaxis and chemotaxis of Azospirillum brasilense. . Microb Ecol 6:277–280
    [Google Scholar]
  29. Reinhold B., Hurek T., Fendrik I. 1985; Strain-specific chemotaxis of Azospirillum spp.. J Bacteriol 162:190–195
    [Google Scholar]
  30. van Rhijn P., Vanstockem M., Vanderleyden J., DeMot R. 1990; Isolation of behavioral mutants of Azospirillum brasilense by using Tn5-lacZ. . Appl Environ Microbiol 4:990–996
    [Google Scholar]
  31. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria.. Bio/Technology 1:784–791
    [Google Scholar]
  32. Smit G., Kijne J.W., Lugtenberg J.J. 1987; Both cellulose fibrils and a Ca2+-dependent adhesin are involved in the at-tachment of Rhizobium leguminosarum to pea root hair tips.. J Bacteriol 169:4294–4301
    [Google Scholar]
  33. Tarrand J.J., Krieg N.R., Döbereiner J. 1978; A taxonomic study of the Spirillum lipoferum group, with description of a new genus, Azospirillum gen. nov., and two species Azospirillum lipoferum (Beijerinck) sp. nov. and Azospirillum brasilense sp. nov.. Can J Microbiol 24:967–980
    [Google Scholar]
  34. Vande Broek A., Vanderleyden J. 1995a; Genetics of the Azospirilium-plant root association.. Crit Rev Plant Sci 14:445–466
    [Google Scholar]
  35. Vande Broek A., Vanderleyden J. 1995b; The role of bacterial motility, chemotaxis and attachment in bacteria-plant interactions.. Mol Plant-Microbe Interact 8:800–810
    [Google Scholar]
  36. VandeBroek A., Van Gool A., Vanderleyden J. 1989; Electroporation of Azospirillum brasilense with plasmid DNA.. FEMS Microbiol Lett 61:177–182
    [Google Scholar]
  37. Vande Broek A., Michiels J., Van Gool A., Vanderleyden J. 1993; Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association.. MoZ Plant-Microbe Interact 6:592–600
    [Google Scholar]
  38. Vanstockem M., Michiels K., Vanderleyden J., Van Gool A. 1987; Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum, physical analysis of Tn5 and TnS-mob insertion mutants.. Appl Environ Microbiol 53:410–415
    [Google Scholar]
  39. Zhulin I.B., Armitage J.P. 1993; Motility, chemokinesis and methylation-independent chemotaxis in Azospirillum brasilense. . J Bacteriol 175:952–958
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-9-2599
Loading
/content/journal/micro/10.1099/00221287-144-9-2599
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error