1887

Abstract

Prokaryote communities in post-glacial profundal freshwater sediments of Windermere, representing 10-12000 years of deposition, were examined for culturability, viability and community structure. The potential for active geochemical cycles was inferred from the presence of specific groups of bacteria. Direct count procedures revealed 10 cells (g dry wt sediment) in the surface sediments, which declined to approximately 10 cells (g dry wt sediment) at 6 m depth of core (representing approximately 10000 years of deposition). The majority of the cells in the upper sediments were metabolically active when challenged with viability probes and responded to the direct viable count method. Below 250 cm, viability shown by 5-cyano-2,3-diotyl tetrazolium chloride (CTC) dye was not significantly different from the direct count; however, counts obtained with 5-carboxyfluorescein diacetate (CFDA) and the direct viable count both declined significantly from the direct count below 250 cm and 1 m, respectively. Culture was achieved from samples throughout the core, although the numbers of culturable bacteria decreased significantly with depth, from 10 c.f.u. (g dry wt sediment) to 10-10 c.f.u. (g dry wt sediment) below 3 m depth. Among culturable isolates, Gram-positives and Gram-negatives were found at all levels of the core, and spore-forming heterotrophs dominated. Although sulphate-reducing bacteria were not detected below 20 cm, isolates demonstrating denitrifying activity were detected at all depths. PCR performed on samples taken below 3 m (deposited more than 7000 years ago) using eubacterial and archaeal primers revealed sequences similar to those found in deep sediments of the Pacific Ocean and the presence of methanogenic archaea. These observations indicate that bacteria and archaea are capable of long-term persistence and activity in deep, aged freshwater sediments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-9-2427
1998-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/9/mic-144-9-2427.html?itemId=/content/journal/micro/10.1099/00221287-144-9-2427&mimeType=html&fmt=ahah

References

  1. Balkwill D.L., Fredrickson J.K., Thomas J.M. 1989; Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep Southeast coastal plain subsurface sediments.. Appl Environ Microbiol 55:1058–1065
    [Google Scholar]
  2. Balkwill D.L., Reeves R.H., Drake G.R., Reeves J.Y., Crocker F.H., King M.B., Boone D.R. 1997; Phylogenetic characterization of bacteria in the subsurface microbial culture collection.. FEMS Microbiol Rev 20:201–216
    [Google Scholar]
  3. Benson D., Lipman D.J., Ostell J. 1993; GenBank.. Nucleic Acids Res 21:2963–2965
    [Google Scholar]
  4. Biovin-Jahns V., Ruimy R., Bianchi A., Daumas A., Christen R. 1996; Bacterial diversity in a deep-subsurface clay environment.. Appl Environ Microbiol 62:3405–3412
    [Google Scholar]
  5. Brandi H., Hanselmann K.W., Bachofen R.B., Piccard J. 1993; Small-scale patchiness in the chemistry and microbiology of sediments in Lake Geneva, Switzerland.. J Gen Microbiol 139:2271–2275
    [Google Scholar]
  6. Brosius J., Palmer J.L. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci USA: 75:4801–4805
    [Google Scholar]
  7. Capone D.G., Kiene R.P. 1988; Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism.. Limnol Oceanogr 33:275–749
    [Google Scholar]
  8. Chapelle F.H., Lovley D.R. 1990; Rates of microbial metabolism in deep costal plain aquifers.. Appl Environ Microbiol 56:1865–1874
    [Google Scholar]
  9. Close T.J., Rodriguez R.L. 1982; Construction and characterisation of the choramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements.. Gene 20:305–316
    [Google Scholar]
  10. Collins V.G. 1977; Methods in sediment microbiology.. Adv Aquat Microbiol 1:219–272
    [Google Scholar]
  11. Cragg B. A., Parkes R. J., Fry J. C., Herbert R. A., Wimpenny J.W.T., Getliff J.M. 1990; Bacterial biomass and activity profiles within deep sediment layers.. Proc ODP Sci Results 112:607–619
    [Google Scholar]
  12. Cragg B.A., Harvey S.M., Fry J.C., Herbert R.A., Parkes R.J. 1992; Bacterial biomass and activity in the deep sediment layers of the Japan Sea, Hole 798B.. Proc ODP Sci Results 127/128:761–776
    [Google Scholar]
  13. Cross T. 1981; Aquatic actinomycetes: a critical survey of the occurrence, growth and role of actinomycetes in aquatic habitats.. J Appl Bacteriol 50:397–123
    [Google Scholar]
  14. Cross T., Atwell R.W. 1974; Recovery of viable thermo- actinomycete endospores from deep mud cores.. In Spore Research 1973 pp. 11–20 Edited by Barker A. N., Gould G. W., Wolf J. London: Academic Press;
    [Google Scholar]
  15. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence-analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  16. Diaper J.P., Edwards C. 1994; The use of fluorogenic esters to detect viable bacteria by flow cytometry.. J Appl Bacteriol 77:221–228
    [Google Scholar]
  17. Edwards U., Rogall T., Blücker H., Emde M., Büttger E.C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterisation of a gene coding for 16S ribosomal RNA.. Nucleic Acids Res 17:7843–7853
    [Google Scholar]
  18. Ekendahl S., Pedersen K. 1994; Carbon transformation by attached bacterial populations in granite groundwaters from deep crystalline bedrock of the Stripa research mine.. Microbiology 140:1565–1573
    [Google Scholar]
  19. Elliot R.J., Porter A.G. 1971; A rapid cadmium reduction method for the determination of nitrite in bacon and curing brines.. Analyst 96:522
    [Google Scholar]
  20. Embley T.M., Finlay B.J., Thomas R.H., Dyal P.L. 1992; Theuse of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palae- formis and its archaeobacterial endosymbiont.. J Gen Microbiol 138:1479–1487
    [Google Scholar]
  21. Felsenstein J. 1993; phylip (Phylogeny Inference Package) version 3.5C.. Seattle: Department of Genetics: University of Washington;
    [Google Scholar]
  22. Fox G.E., Wisotzkey J.D., Jurtshuk P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity.. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  23. Fredrickson J.K., Onstott T.C. 1996; Microbes deep inside the Earth.. Sci Am 275:42–47
    [Google Scholar]
  24. Fredrickson J.K., Balkwill D.L., Zachara J.M., Shu-Mei W.L., Brockman F.J., Simmons M.A. 1991; Physiological diversity and distributions of heterotrophic bacteria in deep Cretaceous sediments of the Atlantic coastal plain.. Appl Environ Microbiol 57:402–411
    [Google Scholar]
  25. Fry J.C. 1990; Direct methods and biomass estimation.. Methods Microbiol 22:41–85
    [Google Scholar]
  26. Fry J.C. 1993; One-way analysis of variance.. In Biological Data Analysis: a Practical Approach Fry J. C. Edited by Oxford: IRL Press;
    [Google Scholar]
  27. Gehron M.J., Davis J.D., Smith G.A., White D.C. 1984; Determination of the Gram-positive bacterial content of soils and sediments by analysis of teichoic acid components.. J Microbiol Methods 2:165–176
    [Google Scholar]
  28. Getliff J.M., Fry J.C., Cragg B.A., Parkes R.J. 1992; Thepotential for bacterial growth in deep sediment layers of the Japan Sea, hole 798B - leg 128.. Proc ODP Sci Results 127/128:755–760
    [Google Scholar]
  29. Gurijala K.R., Alexander M. 1988; Explanation for the decline of bacteria introduced into lake water.. Microb Ecol 20:231–244
    [Google Scholar]
  30. Hales B.A., Edwards C., Ritchie D.A., Hall G., Pickup R.W., Saunders J.R. 1996; Isolation and identification of methanogen DNA from blanket bog peat using PCR amplification and DNA sequence analysis.. Appl Environ Microbiol 62:668–675
    [Google Scholar]
  31. Halvorsen H.O.Zeigler. 1933; Estimation of bacterial numbers by the limiting dilution method.. J Bacteriol 25:101–121
    [Google Scholar]
  32. Haworth E.Y. 1985; The highly nervous system of the English Lakes: aquatic ecosystem sensitivity to external changes, as demonstrated by diatoms.. Freshwater Biol Assoc Annu Rep 53:60–79
    [Google Scholar]
  33. Hazen T.C., Jimenez L., Lopez de Victoria G., Fliermans C.B. 1991; Comparison of bacteria from deep subsurface sediment and adjacent groundwater.. Microb Ecol 22:293–304
    [Google Scholar]
  34. Horsley R.W. 1979; The heterotrophic, nitrate-reducing bacterial flora of Grasmere, English Lake District.. J Appl Bacteriol 46:507–520
    [Google Scholar]
  35. Jarsch M., Bück A. 1985; Sequence of the 16S ribosomal RNA gene from Methanococcus vannielii. . Syst Appl Microbiol 6:54–59
    [Google Scholar]
  36. Johnston D.W. 1972 Actinomycetes in aquatic habitats PhD thesis: University of Bradford;
    [Google Scholar]
  37. Jones J.G. 1982; Activities of aerobic and anaerobic bacteria in lake sediments and their effect on the water column.. In Sediment Microbiology (Special Publication of the Society for General Microbiology no. 7) pp. 107–145 London: Academic Press;
    [Google Scholar]
  38. Jones J.G. 1985; Microbes and microbial processes in sediments.. Philos Trans R Soc Lond A315:3–17
    [Google Scholar]
  39. Jones J.G., Simon B.M. 1981; Differences in microbial decomposition processes in profundal and littoral lake sediments, with particular reference to the nitrogen cycle.. J Gen Microbiol 123:297–312
    [Google Scholar]
  40. Jones J.G., Simon B.M. 1984; The presence and activity of Desulfotomaculum spp. in sulfate-limited freshwater sediments.. FEMS Microbiol Lett 21:47–50
    [Google Scholar]
  41. Jones J.G., Simon B.M., Gardener S. 1982; Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake.. J Gen Microbiol 128:1–11
    [Google Scholar]
  42. Jørgensen B.B. 1983; The microbial sulphur cycle.. In Microbial Geochemistry pp. 91–124 Krumbein W.M. Edited by Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  43. Jukes T.H., Cantor C.R. 1969; Evolution of protein molecules.. In Mammalian Protein Metabolism III, pp. 21–132 Munro H.N. Edited by New York: Academic Press;
    [Google Scholar]
  44. Kennedy M.J., Reader S.L., Swiercznski L.M. 1994; Preservation records of microorganisms: evidence of the tenacity of life.. Microbiology 140:2513–2529
    [Google Scholar]
  45. Kogure K., Simidu U., Taga N., Colwell R.R. 1987; Correlation of direct viable counts with heterotrophic activity of marine bacteria.. Appl Environ Microbiol 53:2332–2337
    [Google Scholar]
  46. Krumholz L.R., Mckinley J.P., Ulrich F.A., Sufflita J.M. 1997; Confined subsurface microbial communities in Cretaceousrock.. Nature 386:64–66
    [Google Scholar]
  47. Larsen N., Olsen G.J., Maidak B.L., McCaughtey M.J., Overbeek R., Macke T.J., Marsh T.L., Woese C.R. 1993; TheRibosomal Database Project.. Nucleic Acid Res 21:3021–3023
    [Google Scholar]
  48. Lovley D.R., Chapelle F.H. 1995; Deep subsurface microbial processes.. Rev Geophys 33:365–381
    [Google Scholar]
  49. Macan T.T. 1970 Biological Studies of the English Lakes London: Longman;
    [Google Scholar]
  50. Mackereth F. J. H. 1958; A portable core sampler for lake deposits.. Limnol Oceanogr 3:181–191
    [Google Scholar]
  51. Nilsson M., Renberg I. 1990; Viable endospores of Thermo- actinomyces vulgaris in lake sediments as indicators of agricultural history.. Appl Environ Microbiol 56:2025–2028
    [Google Scholar]
  52. Ogram A., Sun W., Brockman F.J., Fredrickson J.K. 1995; Isolation and characterisation of RNA from low-biomass deep- subsurface sediments. Appl Environ Microbiol 61:763–768
    [Google Scholar]
  53. Ohnstad F.R., Jones J.G. 1982 The Jenkin Surface Mud Sampler User Manual: Freshwater Biol Assoc Occas Pub no. 15;
    [Google Scholar]
  54. Parkes R. J., Cragg B. A., Bale S. J., Getliff J. M., Goodman K., Rochelle P. A., Fry J. C., Weightman A. J., Harvey S. M. 1994; Deep bacterial biosphere in Pacific Ocean sediments.. Nature 371:410–413
    [Google Scholar]
  55. Pennington W. 1943; Lake sediments: the bottom deposits of the north basin of Windermere, with special reference to the diatom succession.. New Phytol 42:1–27
    [Google Scholar]
  56. Pennington W. 1973; The recent sediments of Windermere.. Freshwater Biol 3:363–382
    [Google Scholar]
  57. Pennington W. 1981; Records of a lake’s life in time: the sediments.. Hydrobiologia 79:197–219
    [Google Scholar]
  58. Pennington W. 1991; Paleolimnology in the English lakes- some questions and answers over fifty years.. Hydrobiologia 214:9–24
    [Google Scholar]
  59. Phelps T.J., Murphy E.M., Pfiffner S.M., White D.C. 1994; Comparison between geochemical and biological estimates of subsurface microbial activities.. Microb Ecol 28:335–349
    [Google Scholar]
  60. Porter J., Diaper J., Edwards C., Pickup R.W. 1995; Direct measurements of natural planktonic bacterial community viability by flow cytometry.. Appl Environ Microbiol 61:2783–2786
    [Google Scholar]
  61. Postgate J.R. 1984 The Sulphate Reducing Bacteria, 2nd. Cambridge: Cambridge University Press;
    [Google Scholar]
  62. Reasoner D.J., Geldreich E.E. 1985; A new medium for the enumeration and subculture of bacteria from potable water.. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  63. Reeves R.H., Reeves J.Y., Balkwill D.L. 1995; Strategies for phylogenetic characterisation of subsurface bacteria.. J Microbiol Methods 21:235–251
    [Google Scholar]
  64. Rochelle P.A., Fry J.C., Parkes R.J., Weightman A.J. 1992; DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities.. FEMS Microbiol Lett 100:59–66
    [Google Scholar]
  65. Rochelle P.A., Cragg B.A., Fry J.C., Parkes R.J., Weightman A.J. 1994; Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis.. FEMS Microbiol Ecol 15:215–226
    [Google Scholar]
  66. Rodriguez G.G., Phipps D., Ishiguro K., Ridgeway H.F. 1992; Use of a fluorescent redox probe for direct visualisation of actively respiring bacteria.. Appl Environ Microbiol 58:1801–1808
    [Google Scholar]
  67. Roszak D.B., Colwell R.R. 1987; Metabolic activity of bacterial cells enumerated by direct viable count.. Appl Environ Microbiol 53:2889–2983
    [Google Scholar]
  68. Rothfuss F., Bender M., Conrad R. 1997; Survival and activity of bacteria in a deep, aged lake sediment (Lake Constance).. Microb Ecol 33:69–77
    [Google Scholar]
  69. Rowbotham T.J., Cross T. 1977; Ecology of Rhodococcus coprophilus and associated actinomycetes in freshwater and agricultural habitats.. J Gen Microbiol 100:231–241
    [Google Scholar]
  70. Rowlatt S.M. 1980 Geochemical studies of recent lake sediments from Cumbria England: PhD thesis, University of Liverpool;
    [Google Scholar]
  71. Saitou N., Nei M. 1987; The neighbour joining method: a new method for constructing phylogenetic trees.. Mol Biol Evol 4:406–425
    [Google Scholar]
  72. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  73. Selenska S., Klingmuller W. 1991; DNA recovery and direct detection of Tn5 sequences from soil.. Lett Appl Microbiol 13:21–24
    [Google Scholar]
  74. Smalla K., Cresswell N., Mendoca-Hagler L.C., Walters A., van Elsas J.D. 1993; Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification.. J Appl Bacteriol 74:78–85
    [Google Scholar]
  75. Stahl D.A., Amman R. 1991; Development and application of nucleic acid probes in bacterial systematics.. In Nucleic Acid Techniques in Bacterial Systematics, pp. 205–248 Stackebrandt E., Goodfellow M. Edited by Chichester: Wiley;
    [Google Scholar]
  76. Stahl D.A., Flesher H.R., Mansfield H.R., Montgomery L. 1988; Use of phylogenetically based hybridisation probes for studies of ruminal microbial ecology.. Appl Environ Microbiol 54:1079–1084
    [Google Scholar]
  77. Wellsbury P., Goodman K., Barth T., Cragg B.A., Barnes S.P., Parkes R.J. 1997; Deep marine biosphere fuelled by increasing organic matter availability during burial and heating.. Nature 388:573–576
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-9-2427
Loading
/content/journal/micro/10.1099/00221287-144-9-2427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error