1887

Abstract

A new type ofβ-lactamase has been isolated and characterized in NRRL B-2682. The enzyme has membrane-bound and extracellular forms. Biochemical characterization of some of the properties of the enzyme showed that it belongs to the class A group of penicillinases. Comparison of the membrane-bound and extracellular forms of theβ-lactamases suggests that they seem to be differently processed forms of the same enzyme. The N-terminal amino acid sequence of the extracellular form of the β-lactamase showed a high degree of similarity to a D-aminopeptidase of another strain. Secretion of the β-lactamase was affected by the differentiation state of the strain since in spontaneous non-sporulating mutants only the membrane-bound form was present. In accordance with this when sporulation of the wild-type strain was inhibited it failed to secrete extracellular β-lactamase. Addition of globomycin to the non-sporulating cells liberated the enzyme from the membrane, indicating that the protein is processed normally by signal peptidase II and a glyceride-thioether group, together with a fatty acid amide-linkage, is responsible for the attachment of the enzyme to the cellular membrane. Under sporulation-repressed conditions addition of peptidoglycan fragments and analogues or inhibition of cell wall biosynthesis by penicillin-G induced β-lactamase secretion and also restored sporulation both in solid and submerged cultures. These results confirm that β-lactamase secretion is tightly coupled to the sporulation process in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-8-2169
1998-08-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/8/mic-144-8-2169.html?itemId=/content/journal/micro/10.1099/00221287-144-8-2169&mimeType=html&fmt=ahah

References

  1. Asano Y., Kato Y., Yamada A., Kondo K. 1992; Structural similarity of D-aminopeptidase to carboxypeptidase DD and β-lactamases.. Biochemistry 31:2316–2328
    [Google Scholar]
  2. Barabás Gy., Penyige A., Hirano T. 1994; Hormone-like factors influencing differentiation of Streptomyces cultures.. FEMS Microbiol Rev 14:75–82
    [Google Scholar]
  3. Barabás J., Barabás Gy., Szabó I., Veerhuis M., Harder W. 1988; Penicillin-binding proteins of protoplast and sporoplast membranes of Streptomyces griseus strains.. Arch Microbiol 150:105–108
    [Google Scholar]
  4. Bender R.A., Janssen K.A., Resnick A.D.M., Blumenberg F.F., Magasanik B. 1977; Biochemical parameters of glutamine synthetase from Klebsiella aerogenes.. J Bacteriol 129:1001–1009
    [Google Scholar]
  5. Bush K. 1989; Characterization of β-lactamases.. Antimicrob Agents Chemother 33:259–263
    [Google Scholar]
  6. Eisenstadt E., Carlton B.C., Brown B.J. 1994; Molecular genetics: gene mutation.. In Methods for General and Molecular Bacteriology pp. 297–317 Gerhardt P., Murray R.G.E., Wood W.A., Krieg N.R. Edited by Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  7. Ensign J.C. 1988; Physiological regulation of sporulation of Streptomyces griseus.. In Biology of Actinomycetes ̓88 pp. 309–315 Okami Y., Beppu T., Ogawara H. Edited by Tokyo:: Japan Scientific Press;
    [Google Scholar]
  8. Hayashi S., Wu H.C. 1990; Lipoproteins in bacteria.. J Bioenerg Biomembr 22:451–471
    [Google Scholar]
  9. Horinouchi S., Beppu T. 1992; Autoregulatory factors and communication in Actinomycetes.. Annu Rev Microbiol 46:377–398
    [Google Scholar]
  10. Hussain M., Pastor F.I.J., Lampen J.O. 1987; Cloning and sequencing of the bla z gene encoding a β-lactamase III, a lipoprotein of Bacillus cereus 569/H.. J Bacteriol 169:579–586
    [Google Scholar]
  11. Inukai M., Takeuchi M., Shimizu K., Arai M. 1978; Mechanism of action of globomycin.. J Antibiot 31:1203–1205
    [Google Scholar]
  12. Jacobs C., Huang L.-J., Bartowsky E., Normark S., Park J.T. 1994; Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction.. EMBO J 13:4684–4694
    [Google Scholar]
  13. Jacobs C., Frere J.M., Normark S. 1997; Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in Gram-negative bacteria.. Cell 88:823–832
    [Google Scholar]
  14. Joris B., Hardt K., Ghuysen J.M. 1994; Induction of β-lactamase and low affinity penicillin-binding protein 2 synthesis in Gram-positive bacteria.. New Compr Biochem 27:505–515
    [Google Scholar]
  15. Juana M., Forsman M., Lenzini M.V., Brans A., Dusart J. 1992; Two different /Mactamase genes are present in Streptomyces cacaoi.. FEMS Microbiol Lett 99:101–106
    [Google Scholar]
  16. Kendrick K.E., Ensign J.C. 1983; Sporulation of Streptomyces griseus in submerged culture.. J Bacteriol 155:357–366
    [Google Scholar]
  17. Kharroubi E.A., Piras G., Jacques P., Szabó I., Van Beeumen J., Coyette J., Ghuysen J.M. 1989; Active-site membrane topology of the DD-peptidase/penicillin-binding protein no. 6 of Enterococcus hirae (Streptococcus faecium) ATCC 9790.. Biocbem J 262:457–462
    [Google Scholar]
  18. Khokhlov A.S., Anisova L.N., Tovarova I.I., Kleine E.M., Krassilnkova O.S., Kornitskaya E.Y., Pilner S.A. 1973; Effect of A-factor on growth of asporogeneous mutant of Streptomyces griseus not producing this factor.. Z Allg Mikrobiol 13:647–655
    [Google Scholar]
  19. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  20. Lampen J.O., Pastor F.I.J., Hussain M. 1986; Processing of secreted proteins and the signal peptidases of bacilli.. In Microbiology-1985 pp. 279–282 Leive L. Edited by Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  21. Lenzini M.V., Juana M., Fraipont C., Joris B., Matagne A., Dusart J. 1992; Induction of a Streptomyces cacaoi β-lactamase gene cloned in S. lividans.. Mol Gen Genet 235:41–48
    [Google Scholar]
  22. Maras B., Greenblatt H.M., Shoham G., Spungin-Bialik A., Biumberg S., Barra D. 1996; Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc-containing aminopeptidases.. Eur J Biocbem 236:843–846
    [Google Scholar]
  23. Miyake K., Kuzuyama T., Horinouchi S., Beppu T. 1990; The A-factor binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation.. J Bacteriol 175:133–140
    [Google Scholar]
  24. Nagarajan V. 1993; Transcription and translation machinery: protein secretion.. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp. 713–729 Sonenshein A.L., Hoch J.A., Losick R. Edited by Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  25. Nielsen J.B.K., Lampen J.O. 1982; Membrane-bound peni-cillinases in Gram-positive bacteria.. J Biol Chem 257:4490–4495
    [Google Scholar]
  26. Nielsen J.B.K., Lampen J.O. 1983; β-Lactamase III of Bacillus cereus 569: membrane lipoprotein and secreted protein.. Biochemistry 22:4652–4656
    [Google Scholar]
  27. O̓Callaghan C.H., Morris A., Kirby S., Shingler A.H. 1972; Novel method for detection of β-lactamase by using a chromogenic cephalosporin substrate.. Antimicrob Agents Chemother 1:283–288
    [Google Scholar]
  28. Ogawara H. 1981; Antibiotic resistance in pathogenic and producing bacteria, with special reference to β-lactam antibiotics.. Microbiol Rev 45:591–619
    [Google Scholar]
  29. Ogawara H. 1996; Structure and evolution of β-lactamase genes from Streptomyces.. Actinomycetes 10:104–111
    [Google Scholar]
  30. Ottolenghi A.C., Caparrós M., de Pedro M.A. 1993; Peptidoglycan tripeptide content and cross-linking are altered in Enterobacter cloacae induced to produce AmpC β-lactamase by glycine and D-amino acids.. ] Bacteriol 175:1537–1542
    [Google Scholar]
  31. Oudega B., Clark D., Stegehuis F., Majoor M.J., Luirink J. 1993; A lipoprotein signal peptide plus a cysteine residue at the amino terminal end of the periplasmic protein β-lactamase is sufficient for its lipid modification, processing and membrane localization in Escherichia coli.. FEMS Microbiol Lett 108:353–360
    [Google Scholar]
  32. Paradkar A.S., Kwamena A.A., Wong A., Jensen S.E. 1996; Molecular analysis of a β-lactam resistance gene encoded within the cephamycin gene cluster of Streptomyces clavuligerus.. J Bacteriol 178:6266–6274
    [Google Scholar]
  33. Penyige A., Kálmánczhelyi A., Sipos A., Ensign J.C., Barabás Gy. 1994; Modification of glutamine synthetase in Streptomyces griseus by ADP-ribosylation and adenylylation.. Biochem Biopbys Res Commun 204:598–605
    [Google Scholar]
  34. Penyige A., Deák E., Kálmánczhelyi A., Barabás Gy. 1996; Evidence of a role for NAD+-glycohydrolase and ADP-ribosyl-transferase in growth and differentiation of Streptomyces griseusNRRL B-2682: inhibition by m-aminophenylboronic acid.. Microbiology 142:1937–1944
    [Google Scholar]
  35. Pérez-Llarena J.F., Liras P., Rodríguez-García A., Martin J.F. 1997; A regulatory gene (ccr) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds.. J Bacteriol 179:2053–2059
    [Google Scholar]
  36. de-los-Reyes-Gavilán C., Cal S., Barbés C., Hardisson C., Sánchez J. 1991; Nutritional regulation of differentiation and synthesis of an exocytoplasmic deoxyriboendonuclease in Streptomyces antibioticus.. J Gen Microbiol 137:299–305
    [Google Scholar]
  37. Samuni A. 1975; A direct spectrophotometric assay and determination of Michaelis constants for the β-lactamase reaction.. Anal Biochem 63:17–26
    [Google Scholar]
  38. Szabó I., Penyige A., Barabás Gy., Szabó G., Dinya Z. 1989; Production of a Streptomycin-Park Nucleotide Complex by Streptomyces griseus.. Antimicrob Agents Chemother 33:58–62
    [Google Scholar]
  39. Wu H.C. 1985; Biogenesis of membrane lipoproteins in bacteria.. In Microbiology-1985 pp. 303–307 Leive L. Edited by Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  40. Zhu Y., Engelbert S., Joris B., Ghuysen J.M., Kobayashi T., Lampen J.O. 1992; Structure, function and fate of the BlaR signal transducer involved in induction of β-lactamase in Bacillus licheniformis.. J Bacteriol 174:6171–6178
    [Google Scholar]
/content/journal/micro/10.1099/00221287-144-8-2169
Loading
/content/journal/micro/10.1099/00221287-144-8-2169
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error