1887

Abstract

The nucleotide sequence of a 2·4 kb BamHI--Sall fragment of Streptomyces venezuelae ISP5230 DNA that complements trpE and trpG mutations in Escherichia coli contains two ORFs. The larger of these (ORF2) encodes a 624 amino acid sequence similar to the overall sequence of the two subunits of anthranilate synthase. The two-thirds nearest the amino terminus resembles the aminase subunit; the remaining one-third resembles the glutamine amidotransferase subunit. Upstream of ORF2 is a small ORF encoding 18 amino acids that include three adjacent Trp residues; in addition the ORF contains inverted repeats with sequence and positional similarity to the products of attenuator (trpL) regions that regulate tryptophan biosynthesis in other bacteria. In cultures of a trpC mutant of S. venezuelae, increasing the concentration of exogenous tryptophan decreased the formation of anthranilate synthase; similar evidence of endproduct repression was obtained in a trpCER mutant of E. coli transformed with a vector containing the cloned DNA fragment from S. venezuelae. The anthranilate synthase activity in S. venezuelae cell extracts was inhibited by tryptophan, although only at high concentrations of the amino acid. A two-base deletion introduced into the cloned S. venezuelae DNA fragment prevented complementation of a trpE mutation in E. coli. However, S. venezuelae transformants in which the two-base deletion had been introduced by replacement of homologous chromosomal DNA did not exhibit a Trp phenotype. The result implies that S. venezuelae has one or more additional genes for anthranilate synthase. In alignments with anthranilate synthase genes from other organisms, ORF2 from S. venezuelae most closely resembled genes for phenazine biosynthesis in Pseudomonas. The results bear on the function of the gene in S. venezuelae.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-7-1971
1998-07-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/7/mic-144-7-1971.html?itemId=/content/journal/micro/10.1099/00221287-144-7-1971&mimeType=html&fmt=ahah

References

  1. Aidoo D.A., Barrett K., Vining L.C. 1990; Plasmid trans-formation of Streptomyces venezuelae: modified procedures used to introduce the genes for p-aminobenzoate synthetase.. J Gen Microbiol 136:657–662
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  3. Anzai H., Kumada Y., Hara O., Murakami T., Ito R., Takano S., Imai S., Satoh A., Nagaoka K. 1988; Replacement of Streptomyces hygroscopicus genomic segments with in vitro- altered DNA sequences.. J Antibiot 41:226–233
    [Google Scholar]
  4. Arhin F.F., Vining L.C. 1993; Organization of the genes encoding p-aminobenzoic acid synthetase from Streptomyces lividans 1326.. Gene 126:129–133
    [Google Scholar]
  5. Bae Y.M., Crawford I.P. 1990; The Rhizobium meliloti trpE(G) gene is regulated by attenuation, and its product, anthranilate synthase, is regulated by feedback inhibition.. J Bacteriol 172:3318–3327
    [Google Scholar]
  6. Bae Y.M., Holmgren E., Crawford I.P. 1989; Rhizobium meliloti anthranilate synthase: cloning, sequence and expression in Escherichia coli.. J Bacteriol 171:3471–3478
    [Google Scholar]
  7. Brown M.P., Aidoo K.A., Vining L.C. 1996; A role for pabAB, a p-aminobenzoate synthase gene of Streptomyces venezuelae ISP5230, in chloramphenicol biosynthesis.. Microbiology 142:1345–1355
    [Google Scholar]
  8. Carter P., Bedovelle H., Winter G. 1985; Improved oligo-nucleotide site-directed mutagenesis using M13 vectors.. Nucleic Acids Res 13:4431–4443
    [Google Scholar]
  9. Chater K.F., Hopwood D.A. 1989; Diversity of bacterial genetics.. In Genetics of Bacterial Diversity pp. 24–46 Hopwood D.A., Chater K.F. Edited by New York:: Academic Press.;
    [Google Scholar]
  10. Clarke L., Carbon J. 1976; A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome.. Cell 9:91–99
    [Google Scholar]
  11. Crawford I.P. 1989; Evolution of a biosynthetic pathway: the tryptophan paradigm.. Annu Rev Microbiol 43:567–600
    [Google Scholar]
  12. Crawford I.P., Milkman R. 1991; Orthologous and paralogous divergence, reticulate evolution and lateral gene transfer in bacterial trp genes.. In Evolution at the Molecular Level pp. 77–95 Selander R.K., Clark A.G., Whittam T.S. Edited by Sunderland, MA:: Sinauer Associates.;
    [Google Scholar]
  13. De Troch P., Dosselaere F., Keijers V., de Wilde P., Vanderleyden J. 1997; Isolation and characterization of the Azospirillum brasilense trpE(G) gene, encoding anthranilate synthase.. Curr Microbiol 34:27–32
    [Google Scholar]
  14. Denhardt D.T. 1966; A membrane-filter technique for the detection of complementary DNA.. Biochem Biophys Res Commun 23:641–646
    [Google Scholar]
  15. Devereux J., Haeberle P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  16. Doull J., Ahmed Z., Stuttard C., Vining L.C. 1985; Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis.. J Gen Microbiol 131:97–104
    [Google Scholar]
  17. Doull J.L, Vats S., Chaliciopoulos M., Stuttard C., Wong K., Vining L.C. 1986; Conjugational fertility and location of chloramphenicol biosynthesis genes on the chromosomal linkage map of Streptomyces venezuelae.. J Gen Microbiol 132:1327–1338
    [Google Scholar]
  18. Essar D.W., Eberly L., Hadero A., Crawford I.P. 1990; Identification and characterization of genes for a second anthranilate synthetase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthetases and evolutionary implications.. J Bacteriol 172:884–900
    [Google Scholar]
  19. Francis M.M., Vining L.C., Westlake D.W.S. 1978; Characterization and regulation of anthranilate synthetase from a chloramphenicol-producing streptomycete.. J Bacteriol 134:1016
    [Google Scholar]
  20. Gerber N.N. 1984; Microbial phenazines.. In Handbook of Microbiology, 2nd edn. V Microbial Products pp. 573–576 Laskin A.I., Lechevalier H.A. Edited by Boca Raton, FL:: CRC Press.;
    [Google Scholar]
  21. Goncharoff P., Nichols B.P. 1984; Nucleotide sequence of Escherichia coli pabB indicates a common evolutionary origin of p-aminobenzoate synthetase and anthranilate synthetase.. J Bacteriol 159:57–62
    [Google Scholar]
  22. Higgins D.G., Sharp P.M. 1989; Fast and sensitive multiple sequence alignment on a microcomputer.. Comput Appl Biosci 5:151–153
    [Google Scholar]
  23. Holmes D.S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids.. Anal Biochem 114:193–200
    [Google Scholar]
  24. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate C.P., Smith C.P., Ward J.M., Schrempf H. 1985 Genetic Manipulation of Streptomyces : a Laboratory Manual. Norwich:: John Innes Foundation.;
    [Google Scholar]
  25. Huang L.H., Zalkin H. 1971; Multiple forms of anthranilate synthase-anthranilate 5-phosphoribosyl pyrophosphate phosphoribosyl transferase from Salmonella typhimurium.. J Biol Chem 246:2338–2354
    [Google Scholar]
  26. Jones A., Westlake D.W.S. 1974; Regulation of chloram-phenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic synthesis.. Can J Microbiol 20:1599–1611
    [Google Scholar]
  27. Karger B.D., Jessee J. 1990; Preparation of single strand DNA from phagemids.. Focus 12:28–29
    [Google Scholar]
  28. Kieser T. 1984; Factors affecting the isolation of cccDNA from Streptomyces lividans and Escherichia coli.. Plasmid 12:19–36
    [Google Scholar]
  29. Kushner S.R. 1978; An improved method for transformation of Escherichia coli with ColE1-derived plasmids.. In Genetic Engineering pp. 17–23 Boyer H.W., Nicosia S. Edited by Amsterdam :: Elsevier/North Holland Biomedical Press.;
    [Google Scholar]
  30. Landick R., Turnbough C.L. Jr Yanofsky C. 1996 In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn. I pp. 1263–1286 Neidhardt F.C. others Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  31. Larson J.L., Hershberger C.L. 1986; The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA.. Plasmid 15:199–209
    [Google Scholar]
  32. Mavrodi D.V., Ksenzenko V.N., Boronin A.M., Cook J.R., Thomashow L.S. 1995; Molecular characterization, nucleotide sequence and expression of phenazine biosynthesis genes in Pseudomonas fluorescens.. GenBank accession no. L48616.
    [Google Scholar]
  33. Paradkar A.S., Stuttard C., Vining L.C. 1991a; Molecular cloning of the genes for anthranilate synthetase from Streptomyces venezuelae ISP5230.. FEMS Microbiol Lett 78:177–182
    [Google Scholar]
  34. Paradkar A.S., Vining L.C., Stuttard C. 1991b; Characterization of tryptophan-requiring auxotrophs of Streptomyces venezuelae ISP5230.. Can J Microbiol 37:333–338
    [Google Scholar]
  35. Paradkar A.S., Stuttard C., Vining L.C. 1993; Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes.. J Gen Microbiol 139:687–694
    [Google Scholar]
  36. Pierson L.S. 3rd Gaffney T., Lam S., Gong F. 1995; Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 3084.. FEMS Microbiol Lett 134:299–307
    [Google Scholar]
  37. Potter C.A., Baumberg S. 1996; End-product control of enzymes of branched-chain amino acid biosynthesis in Streptomyces coelicolor.. Microbiology 142:1945–1952
    [Google Scholar]
  38. Ross C.M., Winkler M.E. 1988; Regulation of tryptophan biosynthesis in Caulobacter crescentus.. J Bacteriol 170:769–774
    [Google Scholar]
  39. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  41. Smith P.K. 1985; Measurement of protein using bicinchoninic acid.. Anal Biochem 150:6–85
    [Google Scholar]
  42. Smith O.H., Yanofsky C. 1963; Intermediates in the bio-synthesis of tryptophan.. Methods Enzymol 6:590–597
    [Google Scholar]
  43. Smithers C.M., Engel P. 1974; Gene-enzyme relationships of tryptophan mutants in Streptomyces coelicolor A3 (2).. Genetics 78:799–808
    [Google Scholar]
  44. Southern E.M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis.. J Mol Biol 98:503–517
    [Google Scholar]
  45. Strohl W.R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters.. Nucleic Acids Res 20:961–974
    [Google Scholar]
  46. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by SV1 and SV2.. J Gen Microbiol 128:115–121
    [Google Scholar]
  47. Stuttard C. 1983; Cotransduction of his and trp loci by phage SV1 in Streptomyces venezuelae.. FEMS Microbiol Lett 20:467–470
    [Google Scholar]
  48. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA.. Methods Enzymol 153:3–15
    [Google Scholar]
  49. Vining L.C., Stuttard C. 1994; Chloramphenicol.. In Genetics and Biochemistry of Antibiotic Production pp. 505–530 Vining L.C., Stuttard C. Edited by Boston:: Butterworth-Heinemann.;
    [Google Scholar]
  50. Wright F., Bibb M.J. 1992; Codon usage in the G + C-rich Streptomyces genome.. Gene 113:55–65
    [Google Scholar]
  51. Yanofsky C. 1981; Attenuation in the control of expression of bacterial operons.. Nature 289:751–758
    [Google Scholar]
  52. Yanofsky C. 1984; Comparison of regulatory and structural regions of genes of tryptophan metabolism.. Mol Biol Evol 1:143–161
    [Google Scholar]
  53. Zalkin H. 1980; Anthranilate synthase: relationships between bifunctional and monofunctional enzymes.. In Multifunctional Proteins pp. 123–149 Bisswanger H., Schminkeott E. Edited by New York:: Wiley.;
    [Google Scholar]
/content/journal/micro/10.1099/00221287-144-7-1971
Loading
/content/journal/micro/10.1099/00221287-144-7-1971
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error