1887

Abstract

Methyl-accepting chemotaxis proteins (MCPs) play important roles in the chemotactic response of many bacteria. Oligonucleotide primers designed to amplify the conserved signalling domain of MCPs by PCR were used to identify potential MCP-encoding genes in Rhizobium leguminosarum. Using a PCR-derived probe created from these primers a genomic library of R. leguminosarum VF39SM was screened; at least five putative MCP-encoding genes (termed mcpB to mcpF) were identified and isolated from the library. One of these putative genes (mcpC) is located on one of the indigenous plasmids of VF39SM. Fifteen different cosmids showing homology to an mcpD probe were also isolated from a genomic library. The complete DNA sequences of mcpB, mcpC and mcpD were obtained. All three genes code for proteins with characteristics typical of MCPs. However, the protein encoded by mcpB has a relatively large periplasmic domain compared to that in other MCPs. Partial DNA sequences of mcpE and mcpF had strong similarity to sequences from the methylation domains of known MCPs. Mutants defective in mcpB, mcpC, mcpD or mcpE were created using insertional mutagenesis strategies. Mutation of mcpB resulted in impairment of chemotaxis to a wide range of carbon sources on swarm plates; phenotypes for the other three mutants have yet to be elucidated. The mcpB, mcpC and mcpD mutants were tested for loss of nodulation competitiveness. When co-inoculated with the wild-type, the mcpB and mcpC mutants formed fewer nodules than the wild-type, whereas the mcpD mutant was just as competitive as the wild-type. The results overall suggest that R. leguminosarum possesses mcp-like genes, and that at least some of these play a role in early steps in the plant-microbe interaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-7-1945
1998-07-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/7/mic-144-7-1945.html?itemId=/content/journal/micro/10.1099/00221287-144-7-1945&mimeType=html&fmt=ahah

References

  1. Alam M., Lebert M., Oesterhelt D., Hazelbauer G.L. 1989; Methyl-accepting taxis proteins in Halobacterium halobium.. EMBO J 8:631–639
    [Google Scholar]
  2. Alley M.R.K., Maddock J.R., Shapiro L. 1992; Polar localization of a bacterial chemoreceptor.. Genes Dev 6:825–836
    [Google Scholar]
  3. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  4. Ames P., Bergman K. 1981; Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti.. J Bacteriol 148:728–729
    [Google Scholar]
  5. Armitage J.P., Gallager A., Johnston A.W.B. 1988; Comparison of the chemotactic behaviour of Rhizobium leguminosarum with and without the nodulation plasmid.. Mol Microbiol 2:743–748
    [Google Scholar]
  6. Baldani J.I., Weaver R.W., Hynes M.F., Eardly B.D. 1992; Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid cured clover Rhizobium.. Appl Environ Microbiol 58:2308–2314
    [Google Scholar]
  7. Bauer W.D. 1991; Motility and chemotaxis in the life of rhizobia.. In Plant Biotechnology and Development pp. 17–24 Gresshoff P. M. Edited by Ann Arbor: CRC Press;
    [Google Scholar]
  8. Bauer W.D., Caetano-Anoll£s G. 1990; Chemotaxis, induced gene expression and competitiveness in the rhizosphere.. Plant Soil 129:45–52
    [Google Scholar]
  9. Beringer J.E. 1974; R factor transfer in Rhizobium leguminosarum.. J Gen Microbiol 84:188–198
    [Google Scholar]
  10. Boivin C., Barran L.R, Malpica C.A., Rosenberg C. 1991; Genetic analysis of a region of the Rhizobium meliloti pSym plasmid specifying catabolism of trigonelline, a secondary metab- olite present in legumes.. J Bacteriol 173:2809–2817
    [Google Scholar]
  11. Boyd A., Kendall K., Simon M.I. 1983; Structure of the serine chemoreceptor in Escherichia coli.. Nature 301:623–626
    [Google Scholar]
  12. Brito B., Palacios J.-M., Ruiz-Argüeso T., Imperial J. 1996; Identification of a gene for a chemoreceptor of the methyl- accepting type in the symbiotic plasmid of Rhizobium leguminosarum bv.viciae UPM791.. Biochim Biophys Acta 1308:7–11
    [Google Scholar]
  13. Caetano-Anoll£s G.fWall, Micheli A.T.D., Macchi E.M., Bauer W.D., Favelukes G. 1988; Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti.. Plant Physiol 86:1228–1235
    [Google Scholar]
  14. Caetano-Anollés G., Wrobel-Boerner E., Bauer W.D. 1992; Growth and movement of spot inoculated Rhizobium meliloti on the root surface of alfalfa.. Plant Physiol 98:1181–1189
    [Google Scholar]
  15. Charles T.C., Finan T. 1991; Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo.. Genetics 127:5–20
    [Google Scholar]
  16. Currier W.W., Strobel G.A. 1977; Chemotaxis of Rhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots.. Science 196:434–435
    [Google Scholar]
  17. Deckers H.M., Voordouw G. 1994; Identification of a large family of genes for putative chemoreceptor proteins in an ordered library of the Desulfovibrio vulgaris Hildenborough genome.. J Bacteriol 176:351–358
    [Google Scholar]
  18. Dharmatilake A.J., Bauer W.D. 1992; Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots.. Appl Environ Microbiol 58:1153–1158
    [Google Scholar]
  19. Dolla A., Fu R., Brumlik M.J., Voordouw G. 1992; Nucleotide sequence of dcrA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli.. J Bacteriol 174:1726–1733
    [Google Scholar]
  20. Eckhardt T. 1978; A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria.. Plasmid 1:584–588
    [Google Scholar]
  21. Everiss K.D., Hughes K.J., Kovach M.E., Peterson K.M. 1994; The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins.. Infect Immun 62:3289–3298
    [Google Scholar]
  22. Fellay R., Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria.. Gene 52:147–154
    [Google Scholar]
  23. Freiberg C., Fellay R., Bairoch A., Broughton W.J., Rosenthal A., Perret X. 1997; Molecular basis of symbiosis between Rhizobium and legumes.. Nature 387:394–401
    [Google Scholar]
  24. Greek M., Platzer J., Sourjik V., Schmitt R. 1995; Analysis of a chemotaxis operon in Rhizobium meliloti.. Mol Microbiol 15:989–1000
    [Google Scholar]
  25. Gulash M., Ames P., Larosiliere R.G, Bergman K. 1984; Rhizobia are attracted to localized sites on legume roots.. Appl Environ Microbiol 48:149–152
    [Google Scholar]
  26. Hanlon D.W., Ordal G.W. 1994; Cloning and charac-terization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis.. J Biol Chem 269:14038–14046
    [Google Scholar]
  27. Harkey GW., Everiss K.D., Peterson K.M. 1994; The Vibrio cholerae toxin-coregulated-pilus gene tcpl encodes a homolog of methyl-accepting chemotaxis proteins.. Infect Immun 62:2669–2678
    [Google Scholar]
  28. Hazelbauer G.L. 1988; The bacterial chemosensory system.. Can J Microbiol 34:466–474
    [Google Scholar]
  29. Hazelbauer G.L., Yaghmai R., Burrows G.G., Baumgartner J.W., Dutton D.P., Morgan D.G. 1990; Transducers: trans-membrane receptor proteins involved in bacterial chemotaxis.. In The Biology of the Chemotactic Response pp. 107–134 Armitage J. P., Lackie J.M. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  30. Hynes M.F., McGregor N.F. 1990; Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum.. Mol Microbiol 4:567–574
    [Google Scholar]
  31. Hynes M.F., Simon R., Pühler A. 1985; The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAEC58.. Plasmid 13:99–105
    [Google Scholar]
  32. Hynes M.F., Brucksch K., Priefer U. 1988; Melanin pro-duction encoded by a cryptic plasmid in a Rhizobium leguminosarum strain.. Arch Microbiol 150:326–332
    [Google Scholar]
  33. Hynes M.F., Quandt J., O’Connell M.P., Pühler A. 1989; Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene.. Gene 78:111–120
    [Google Scholar]
  34. Jones J.D., Gutterson N. 1987; An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a.. Gene 61:299–306
    [Google Scholar]
  35. Manson M.D. 1992; Bacterial motility and chemotaxis.. Adv Microb Physiol 33:277–346
    [Google Scholar]
  36. Matsumura P., Roman S., Volz K., McNally D. 1990; Signaling complexes in bacterial chemotaxis.. In The Biology of the Chemotactic Response pp. 135–154 Armitage J.P., Lackie J.M. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  37. McCleary W.R., Zusman D.R. 1990; FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typhimurium.. Proc Natl Acad Sci USA 87:5898–5902
    [Google Scholar]
  38. McCleary W.R., McBride M.J., Zusman D.R. 1990; Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of FrzCD.. J Bacteriol 172:4877–4887
    [Google Scholar]
  39. Mercado-Bianco J., Toro N. 1996; Plasmids in Rhizobia: the role of nonsymbiotic plasmids.. Mol Plant-Microbe Interact 9:535–545
    [Google Scholar]
  40. Michotey V., Toussaint B., Richaud P., Vignais P.M. 1996; Characterisation of the mcpA and mcpB genes capable of encoding methyl-accepting type chemoreceptors in Rhodobacter capsulatus.. Gene 170:73–76
    [Google Scholar]
  41. Morgan D.G., Baumgartner J.W., Hazelbauer G.L. 1993; Proteins antigenically related to methyl-accepting chemotaxis proteins of E. coli detected in a wide range of bacterial species.. J Bacteriol 175:133–140
    [Google Scholar]
  42. MunozAguilar J.M., Ashby A.M., Richards A.J.M., Loake G.J., Watson M.D., Shaw C.H. 1988; Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of symbiotic nodulation genes.. J Gen Microbiol 134:2741–2746
    [Google Scholar]
  43. Murphy P.J., Heycke N., Banflavi Z., Tate M.E., de Bruijn F., Kondorosi A., Tempe J., Schell J. 1987; Genes for the catabolism and synthesis of opine-like compounds in Rhizobium meliloti are closely linked and on the sym plasmid.. Proc Natl Acad Sci USA 84:493–497
    [Google Scholar]
  44. Parke D., Ornston L.N. 1984; Nutritional diversity of Rhizobiaceae revealed by auxanography.. J Gen Microbiol 130:1743–1750
    [Google Scholar]
  45. Parke D., Rivelli M., Ornston L.N. 1985; Chemotaxis to aromatic and hydroaromatic acids:comparisons ofBradyrhizobium iaponicum and Rhizobium trifolii.. J Bacteriol 163:417–422
    [Google Scholar]
  46. Parkinson J.S. 1993; Signal transduction schemes of bacteria.. Cell417–422
    [Google Scholar]
  47. Prentki P., Krisch H.M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment.. Gene 29:303–313
    [Google Scholar]
  48. Priefer U.B. 1989; Genes involved in lipopolysaccharide pro-duction and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39.. J Bacteriol 171:6161–6168
    [Google Scholar]
  49. Quandt J., Hynes M.F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in gram negative bacteria.. Gene 127:15–21
    [Google Scholar]
  50. Robinson J.B., Bauer W.D. 1993; Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti.. J Bacteriol 175:2284–2291
    [Google Scholar]
  51. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  52. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria.. Bio/Technology 1:784–791
    [Google Scholar]
  53. Stock J.B., Lukat G.S., Stock A.M. 1991; Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks.. Annu Rev Biophys Biophys Chem 20:109–136
    [Google Scholar]
  54. Stowers M.D. 1985; Carbon metabolism in Rhizobium species.. Annu Rev Microbiol 39:89–108
    [Google Scholar]
  55. Tepfer D., Goldman A., Pamboukdjian N., Maille M., Lepingle A., Chevalier D., Dánariá J., Rosenberg C. 1988; A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium.. J Bacteriol 170:1153–1161
    [Google Scholar]
  56. VandeBroek A., Vanderleyden J. 1995; The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions.. Mol Plant-Microbe Interact 8:800–810
    [Google Scholar]
  57. Vincent J.M. 1970 A Manual for the Practical Study of Root- nodule Bacteria (IBP handbook no. 15) Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  58. Ward M.J., Harrison D.M., Ebner M.J., Armitage J.P. 1995; Identification of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides.. Mol Microbiol 18:115–121
    [Google Scholar]
  59. Zhang W., Brooun A., McCandless J., Banda P., Alam M. 1996; Signal transduction in the Archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins.. Proc Natl Acad Sci USA 93:4649–4654
    [Google Scholar]
  60. Zuberi A.R., Ying C.W., Parker H.M., Odal G.W. 1990; Transposon Tn917lacZ mutagenesis of Bacillus subtilis: identification of two new loci required for motility and chemotaxis.. J Bacteriol 172:6841–6848
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-7-1945
Loading
/content/journal/micro/10.1099/00221287-144-7-1945
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error