1887

Abstract

Burkholderia cepacia produces an unusual range of polar lipids, which includes two forms each of phosphatidylethanolamine (PE) and ornithine amide lipid (OL), differing in the presence or absence of 2-hydroxy fatty acids. By using chemostat cultures in chemically defined media, variations in the lipid content and the proportions of individual lipids have been studied as a function of (a) growth temperature, (b) growth rate and (c) growth-limiting nutrient (carbon, magnesium, phosphorus or oxygen). Total cellular lipid in carbon-limited cultures was lowest at high growth temperatures and low growth rates. Increases in growth temperature over the range 25--40 ° led to increases in the proportions of molecular species of PE and OL containing 2-hydroxy acids, without changing the PE: OL ratio. Growth temperature did not alter the balance between neutral and acidic lipids, but the contribution of phosphatidylglycerol to the latter increased with rising growth temperature and growth rate. Pigmentation of cells and the presence of flagella were also temperature-dependent. Change in growth rate also affected the PE: OL ratio and the extent to which monoenoic acids were replaced by their cyclopropane derivatives. Whereas similar lipid profiles were found for carbon-, magnesium-and oxygen-limited cultures, ornithine amides were the only polar lipids detected in phosphorus-limited cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-7-1737
1998-07-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/7/mic-144-7-1737.html?itemId=/content/journal/micro/10.1099/00221287-144-7-1737&mimeType=html&fmt=ahah

References

  1. Abbas C.A., Card G.L. 1980; The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica.. Biochim Biophys Acta 602:469–476
    [Google Scholar]
  2. Adams R.L., Russell N.J. 1992; Interactive effects of salt concentration and temperature on growth and lipid composition in the moderately halophilic bacterium Vibrio costicola.. Can J Microbiol 38:823–827
    [Google Scholar]
  3. Anwar H., Brown M.R.W., Cozens R.M., Lambert P.A. 1983a; Isolation and characterization of the outer and cytoplasmic membranes of Pseudomonas cepacia.. J Gen Microbiol 129:499–507
    [Google Scholar]
  4. Anwar H., Brown M.R.W., Lambert P.A. 1983b; Effect of nutrient depletion on sensitivity of Pseudomonas cepacia to phagocytosis and serum bactericidal activity at different temperatures.. J Gen Microbiol 129:2021–2027
    [Google Scholar]
  5. Arneborg N., SteenSalskov-lversen A., Mathiasen T.E. 1993; The effect of growth rate and other growth conditions on the lipid composition of Escherichia coli.. Appl Microbiol Biotechnol 39:353–357
    [Google Scholar]
  6. Asselineau J., Pichinoty F., Prom D., Promé J.-C. 1988; Composition des lipides complexes de Plavobacterium meningo- septicum.. Ann Microbiol (Paris) 139:159–170
    [Google Scholar]
  7. Bartlett G. R. 1959; Phosphorus assay in column chromato- graphy.. J Biol Chem 234:466–468
    [Google Scholar]
  8. Benning C., Huang Z.-H., Gage D.A. 1995; Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.. Arch Biochem Biophys 317:103–111
    [Google Scholar]
  9. Bhakoo M., Herbert R.A. 1979; The effects of temperature on the fatty acid and phospholipid composition of four obligately psychrophilic Vibrio spp.. Arch Microbiol 121:121–127
    [Google Scholar]
  10. Bhakoo M., Herbert R.A. 1980; Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas spp. grown at different temperatures.. Arch Microbiol 126:51–55
    [Google Scholar]
  11. Braunegg G., Sonnleitner B., Lafferty R.M. 1978; A rapid gas chromatographic method for the determination of poly-β- hydroxybutyric acid in microbial biomass.. Eur J Appl Microbiol Biotechnol 6:29–37
    [Google Scholar]
  12. Bryn K., Jantzen E. 1982; Analysis of lipopolysaccharides by methanolysis, trifluoroacetylation, and gas chromatography on a fused-silica capillary column.. J Chromatogr 240:405–413
    [Google Scholar]
  13. Calcott P.H., Petty R.S. 1980; Phenotypic variability of lipids of Escherichia coli grown in chemostat culture.. FEMS Microbiol Lett 7:23–27
    [Google Scholar]
  14. Chaney A.L., Marbach E.P. 1962; Modified reagents for determination of urea and ammonia.. Clin Chem 8:130–132
    [Google Scholar]
  15. Cox A.D., Wilkinson S.G. 1989; Polar lipids and fatty acids of Pseudomonas cepacia.. Biochim Biophys Acta 1001:60–67
    [Google Scholar]
  16. Cozens R.M., Brown M.R.W. 1983; Effect of nutrient depletion on the sensitivity of Pseudomonas cepacia to antimicrobial agents.. J Pharm Sci 72:1363–1365
    [Google Scholar]
  17. Cullen J., Phillips M.C., Shipley G.G. 1971; The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens.. Biochem J 125:733–742
    [Google Scholar]
  18. Damoglou A.P., Dawes E.A. 1968; Studies on the lipid content and phosphate requirement of glucose- and acetate- grown Escherichia coli.. Biochem J 110:775–781
    [Google Scholar]
  19. Dawes E.A. 1992; Storage polymers in prokaryotes.. Symp Soc Gen Microbiol 47:81–122
    [Google Scholar]
  20. Dittmer J.C., Lester R.L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms.. J Lipid Res 5:126–127
    [Google Scholar]
  21. Dorrer E., Teuber M. 1977; Induction of polymyxin resistance in Pseudomonas fluorescens by phosphate limitation.. Arch Microbiol 114:87–89
    [Google Scholar]
  22. Duthie A.H., Patton S. 1965; Purification of phospholipids removed from thin-layer chromatograms for infrared spectral analysis.. J Lipid Res 6:320–322
    [Google Scholar]
  23. Galbraith L., Wilkinson S.G. 1991; Polar lipids and fatty acids of Pseudomonas caryophylli, Pseudomonas gladioli and Pseudomonas pickettii.. J Gen Microbiol 137:197–202
    [Google Scholar]
  24. Gilbert P., Brown M.R.W. 1978; Influence of growth rate and nutrient limitation on the gross cellular composition of Pseudo- monas aeruginosa and its resistance to 3- and 4-chlorophenol.. J Bacteriol1066–1072
    [Google Scholar]
  25. Gill C.O. 1975; Effect of growth temperature on the lipids of Pseudomonas fluorescens.. J Gen Microbiol 89:293–298
    [Google Scholar]
  26. Gill C.O., Suisted J.R. 1978; The effects of temperature and growth rate on the proportion of unsaturated fatty acids in bacterial lipids.. J Gen Microbiol 104:31–36
    [Google Scholar]
  27. Govan J.R.W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis:mucoid Pseudomonas aeruginosa andBurkholderia cepacia.. Microbiol Rev 60:539–574
    [Google Scholar]
  28. Govan J.R.W., Hughes J.E., Vandamme P. 1996; Burkholderia cepacia-, medical, taxonomic and ecological issues.. J Med Microbiol 45:395–407
    [Google Scholar]
  29. Haest C.W.M., De Gier J., van Deenen L.L.M. 1969; Changes in the chemical and the barrier properties of the membrane lipids of E. coli by variation of the temperature of growth.. Chem Phys Lipids 3:413–417
    [Google Scholar]
  30. Hazel J.R. 1995; Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?. Annu Rev Physiol 57:19–42
    [Google Scholar]
  31. Hoischen G, Luge C., Gumpert J. 1997; Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form.. Bacteriol 179:3430–3436
    [Google Scholar]
  32. Kato H., Goto N. 1997; Adjuvanticity of an ornithine- containing lipid of Flavobacterium meningosepticum as a candidate vaccine adjuvant.. Microbiol Immunol 41:101–106
    [Google Scholar]
  33. Kawai Y., Akagawa K. 1989; Macrophage activation by an ornithine-containing lipid or a serine-containing lipid.. Infect Immun 57:2086–2091
    [Google Scholar]
  34. Kawai Y., Yano I. 1983; Ornithine-containing lipid of Bordetella pertussis, a new kind of hemagglutinin.. Eur J Biochem 136:531–538
    [Google Scholar]
  35. Kawai Y., Yano I., Kaneda K. 1988a; Various kinds of lipoamino acids including a novel serine-containing lipid in an opportunistic pathogen Flavobacterium. Their structures and biological activities on erythrocytes.. Eur J Biochem 171:73–80
    [Google Scholar]
  36. Kawai Y., Yano I., Kaneda K., Yabuuchi E. 1988b; Ornithine- containing lipids of some Pseudomonas species.. Eur J Biochem 175:633–641
    [Google Scholar]
  37. Kawai Y., Takasuka N., Akagawa K., Naito S. 1996; Hypothermic response of mice to ornithine-containing lipids and to endotoxin.. Infect Immun 64:2101–2105
    [Google Scholar]
  38. Kawanami J., Kimura A., Nakagawa Y., Otsuka H. 1969; Lipids of Streptomyces sioyaensis. V. On the 2-hydroxy-13- methyltetradecanoic acid from phosphatidylethanolamine.. Chem Phys Lipids 3:29–38
    [Google Scholar]
  39. Kawasaki S., Moriguchi R., Sekiya K., Nakai T., Ono E., Kume K., Kawahara K. 1994; The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingo- monas paucimobilis.. J Bacteriol 176:284–290
    [Google Scholar]
  40. Kawazoe R., Monde K., Reichardt W., Okuyama H. 1992; Lipoamino acids and sulfonolipids in Cytophaga johnsonaeStanier strain C21 and six related species of Cytophaga.. Arch Microbiol 158:171–175
    [Google Scholar]
  41. Knoche H.W., Shively J.M. 1972; The structure of an ornithine-containing lipid from Thiobacillus thiooxidans.. J Biol Chem 247:170–178
    [Google Scholar]
  42. Leach S., Harvey P., Wait R. 1997; Changes with growth rate in the membrane lipid composition of and amino acid utilization by continuous cultures of Campylobacter jejuni.. J Appl Microbiol 82:631–640
    [Google Scholar]
  43. Lessie T.G., Phibbs P.V. 1984; Alternative pathways of carbohydrate utilization in pseudomonads.. Annu Rev Microbiol 38:359–387
    [Google Scholar]
  44. London E., Feigenson G.W. 1979; Phosphorus NMR analysis of phospholipids in detergents.. J Lipid Res 20:408–412
    [Google Scholar]
  45. McKenney D., Allison D.G. 1995; Effects of growth rate and nutrient limitation on virulence factor production in Burkholderia cepacia.. J Bacteriol 177:4140–4143
    [Google Scholar]
  46. McKenney D., Allison D.G. 1997; Influence of growth rate and nutrient limitation on susceptibility of Burkholderia cepacia to ciprofloxacin and tobramycin.. J Antimicrob Chemother 40:414–417
    [Google Scholar]
  47. McKenney D., Wiilcock L., Trueman P.A., Allison D.G. 1994; Effect of sub-MIC antibiotics on the cell surface and extracellular virulence determinants of Pseudomonas cepacia.. J Appl Bacteriol 76:190–195
    [Google Scholar]
  48. Matsunaga I., Kusunose E., Yano I., Ichihara K. 1994; Separation and partial characterisation of soluble fatty acid a- hydroxylase from Sphingomonas paucimobilis.. Biochem Biophys Res Commun 201:1554–1560
    [Google Scholar]
  49. Matsunaga I., Yamada M., Kusunose E., Nishiuchi Y., Yano I., Ichihara K. 1996; Direct involvement of hydrogen peroxide in bacterial a-hydroxylation of fatty acid.. FEBS Lett 386:252–254
    [Google Scholar]
  50. Minnikin D.E., Abdolrahimzadeh H., Baddiley J. 1974; The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas ftuorescens NCMB 129.. FEBS Lett 43:257–260
    [Google Scholar]
  51. Minnikin D.E., Abdolrahimzadeh H., Baddiley J. 1974; Replacement of acidic phospholipids by acidic glycolipids in Pseudomonas diminuta.. Nature 249:268–269
    [Google Scholar]
  52. Nagamachi E., Shibuya S., Hirae Y., Matsushita O., Tomochika K., Kanemasa Y. 1991; Adaptational changes of fatty acid composition and the physical state of membrane lipids following the change of growth temperature in Yersinia enterocolitica.. Microbiol Immunol 35:1085–1093
    [Google Scholar]
  53. Nelson J.W., Butler S.L., Krieg D., Govan J.R.W. 1994; Virulence factors of Burkholderia cepacia.. FEMS Immunol Med Microbiol 8:89–98
    [Google Scholar]
  54. Ohno Y., Yano I., Masui M. 1979; Effect of NaCl con- centration and temperature on the phospholipid and fatty acid compositions of a moderately halophilic bacterium, Pseudomonas hafosaccharofytica.. J Biochem (Tokyo): 85413–421
    [Google Scholar]
  55. Phung L.V., Chi T.T.B., Hotta H., Yabuuchi E., Yano I. 1995a; Cellular lipid and fatty acid compositions of Burkholderia pseudomallei strains isolated from human and environment in Viet Nam.. Microbiol Immunol 39:105–116
    [Google Scholar]
  56. Phung L.V., Han Y., Oka S., Hotta H., Smith M.D., Theeparakun P., Yabuuchi E., Yano I. 1995b; Enzyme-linked immunosorbent assay (ELISA) using a glycolipid antigen for the serodiagnosis of melioidosis.. FEMS Immunol Med Microbiol 12:259–264
    [Google Scholar]
  57. Pitta T.P., Leadbetter E.R., Godchaux W. 1989; Increase of ornithine amino lipid content in a sulfonolipid-deficient mutant of Cytophaga johnsonae.. J Bacteriol 171:952–957
    [Google Scholar]
  58. Pramanik B.N., Zechman J.M., Das P.R., Bartner P.L. 1990; Bacterial phospholipid analysis by fast atom bombardment mass spectrometry.. Biomed Environ Mass Spectrom 19:164–170
    [Google Scholar]
  59. Ratledge C., Wilkinson S.G. (editors) editors Microbial Lipids 1 London: Academic Press;
    [Google Scholar]
  60. Russell N.J. 1984; Mechanisms of thermal adaptation in bacteria: blueprints for survival.. Trends Biochem Sci 9:108–112
    [Google Scholar]
  61. Sinensky M. 1974; Homeoviscous adaptation - a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli.. Proc Natl Acad Sci USA 71:522–525
    [Google Scholar]
  62. Singh D., Jarrell H.C., Florio E., Fenske D.B., Grant C.W.M. 1992; Effects of fatty acid alpha-hydroxylation on glyco- sphingolipid properties in phosphatidylcholine bilayers.. Biochim Biophys Acta 1103:268–274
    [Google Scholar]
  63. Suutari M., Laakso S. 1994; Microbial fatty acids and thermal adaptation.. Crit Rev Microbiol 20:285–328
    [Google Scholar]
  64. Tahara Y., Kameda M., Yamada Y., Kondo K. 1976; Anornithine-containing lipid isolated from Gluconobacter cerinus.. Biochim Biophys Acta 450:225–230
    [Google Scholar]
  65. Tsuchiya H., Sato M., Kanematsu N., Kato M., Hoshino Y., Takagi N., Namikawa I. 1987; Temperature-dependent changes in phospholipid and fatty acid composition and membrane lipid fluidity of Yersinia enterocolitica.. Lett Appl Microbiol 5:15–18
    [Google Scholar]
  66. Wada M., Fukunaga N., Sasaki S. 1987; Effect of growth temperature on phospholipid and fatty acid compositions in a psychrotrophic bacterium, Pseudomonas sp. strain E-3.. Plant Cell Physiol 28:1209–1217
    [Google Scholar]
  67. Wee S., Wilkinson B.J. 1988; Increased outer membrane ornithine-containing lipid and lysozyme penetrability of Paracoccus denitrificans grown in a complex medium deficient in divalent cations.. J Bacteriol 170:3283–3286
    [Google Scholar]
  68. Wilkinson B.J., Sment K.A., Mayberry W.R. 1982; Occurrence, localization, and possible significance of an ornithine-containing lipid in Paracoccus denitrificans.. Arch Microbiol 131:338–343
    [Google Scholar]
  69. Wilkinson S.G. 1972; Composition and structure of the ornithine-containing lipid from Pseudomonas rubescens.. Biochim Biophys Acta 270:1–17
    [Google Scholar]
  70. Wilkinson S.G. 1988; Gram-negative bacteria.. In Microbial Lipids 1 pp. 299–488 Ratledge C., Wilkinson S.G. Edited by London: Academic Press;
    [Google Scholar]
  71. Wilkinson S.G., Bell M.E. 1971; The phosphoglucolipid from Pseudomonas diminuta.. Biochim Biophys Acta 248:293–299
    [Google Scholar]
  72. Wilkinson S.G., Pitt T.L. 1995a; Burkhofderia (Pseudomonas) cepacia: surface chemistry and typing methods.. Rev Med Microbiol 6:1–9
    [Google Scholar]
  73. Wilkinson S.G., Pitt T.L. 1995b; Burkhofderia (Pseudomonas) cepacia: pathogenicity and resistance.. Rev Med Microbiol 6:10–17
    [Google Scholar]
  74. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb, nov.. Microbiol Immunol 36:1251–1275
    [Google Scholar]
  75. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y. 1995; Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston,Palleroni and Doudoroff 1973) comb, nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov.. Microbiol Immunol 39:897–904
    [Google Scholar]
  76. Yamanaka S., Fudo R., Kawaguchi A., Komagata K. 1988; Taxonomic significance of hydroxy fatty acids in myxobacteria with special reference to 2-hydroxy fatty acids in phospholipids.. J Gen Appl Microbiol 34:57–66
    [Google Scholar]
  77. Yano I., Furukawa Y., Kusunose M. 1970; a-Hydroxy fatty acid-containing phospholipids of Nocardia leishmanii.. Biochim Biophys Acta 202:189–191
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-7-1737
Loading
/content/journal/micro/10.1099/00221287-144-7-1737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error