1887

Abstract

The enzymes for catabolism of the pentitols -arabinitol (Dal) and ribitol (Rbt) and the corresponding genes from and ) and and ) have been used intensively in experimental evolutionary studies. Four and four genes from the chromosome of 1033-5P14 were cloned and sequenced. These genes are clustered in two adjacent but divergently transcribed operons and separated by two convergently transcribed repressor genes, and . Each operon encodes an NAD-dependent pentose dehydrogenase ( and ), an ATP-dependent pentulose kinase ( and rbtK) and a pentose-specific ion symporter (dalT and rbtT). Although the biochemical reactions which they catalyse are highly similar, the enzymes showed interesting deviations. Thus, DalR (313 aa) and RbtR (270 aa) belong to different repressor families, and DalD (455 aa) and RbtD (248 aa), which are active as a monomer or as tetramers, respectively, belong to different dehydrogenase families. Of the two kinases (19.3% identity), DalK (487 aa) belongs to the subfamily of short -xylulokinases and RbtK (-ribulokinase; 535 aa) to the subfamily of long kinases. The repressor, dehydrogenase and kinase genes did not show extensive similarity beyond local motifs. This contrasts with the ion symporters (86.6% identity) and their genes (82.7% identity). Due to their unusually high similarity, parts of and have previously been claimed erroneously to correspond to ‘inverted repeats’ and possible remnants of a ‘metabolic transposon’ comprising the and genes. Other characteristic structures, e.g. a secondary attλ site and chi-like sites, as well as the conservation of this gene group in C are also discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-6-1631
1998-06-01
2021-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/6/mic-144-6-1631.html?itemId=/content/journal/micro/10.1099/00221287-144-6-1631&mimeType=html&fmt=ahah

References

  1. Aulkemeyer, P., Ebner, R., Heilenmann, R., Jahreis, G., Schmid, K., Wrieden, S., Lengeler, J. W. (1991); Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria.. Mol Microbiol 5,:2913–2922
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K. (1990) Current Protocols in Molecular Biology. Chichester:: Wiley;
    [Google Scholar]
  3. Bork, P., Sander, C., Valencia, A. (1993); Convergent evolution of similar enzymatic function on different protein folds: the hexo- kinase, ribokinase and galactokinase families of sugar kinases.. Protein Sci 2,:31–40
    [Google Scholar]
  4. Charnetzky, W. T., Mortlock, R. P. (1974a); Ribitol catabolic pathway in Klebsiella aerogenes.. J Bacteriol 119,:162–169
    [Google Scholar]
  5. Charnetzky, W. T., Mortlock, R. P. (1974b); D -Arabitol catabolic pathway in Klebsiella aerogenes.. J Bacteriol 119,:170–175
    [Google Scholar]
  6. Charnetzky, W. T., Mortlock, R. P. (1974c); Close genetic linkage of the determinants of the ribitol and D-arabitol pathways in Klebsiella aerogenes.. J Bacteriol 119,:176–182
    [Google Scholar]
  7. Hartley, B. S. (1984a) Experimental evolution of ribitol dehydrogenase.. In Edited by Mortlock, R. P. Microorganisms as Model Systems for Studying Evolution. New York:: Plenum Press.;23–54
    [Google Scholar]
  8. Hartley, B. S. (1984b) The structure and control of the pentitol operons.. In Edited by Mortlock, R. P. Microorganisms as Model Systems for Studying Evolution. New York:: Plenum Press.;55–107
    [Google Scholar]
  9. Heuel, H., Turgut, S., Schmid, K., Lengeler, J. W. (1997); Substrate recognition domains as revealed by active hybrids between the D- arabinitol and ribitol transporters from Klebsiella pneumoniae.. J Bacteriol 179,:6014–6019
    [Google Scholar]
  10. Knott, T. J. (1982); The D-arabitol operon of Klebsiella aerogenes,. PhD thesis. University of London;
  11. Lengeler, J. W. (1975); Nature and properties of hexitol transport systems in Escherichia coli.. J Bacteriol 124,:39–47
    [Google Scholar]
  12. Lengeler, J. W., Lin, E. C. C. (1972); Reversal of the mannitol- sorbitol diauxie in Escherichia coli.. J Bacteriol 112,:840–848
    [Google Scholar]
  13. Link, C. D., Reiner, A. M. (1982); Inverted repeats surround the ribitol-arabitol genes of E. coli C.. Nature 298,:94–96
    [Google Scholar]
  14. Link, C. D., Reiner, A. M. (1983); Genotypic exclusion: a novel relationship between the ribitol-arabitol and galactitol genes of E. coli.. Mol & Gene Genet 189,:337–339
    [Google Scholar]
  15. Mortlock, R. P. (1982); Metabolic acquisitions through laboratory selection.. Annu Rev of Microbiol 36,:259–284
    [Google Scholar]
  16. Mortlock, R. P. (1984) The utilization of pentitols in studies of the evolution of enzyme pathways.. In Edited by Mortlock, R. P. Microorganisms as Model Systems for Studying Evolution, New York:: Plenum Press.;1–21
    [Google Scholar]
  17. Neuberger, M. S., Hartley B. S. (1979); Investigations into the K. aerogenes pentitol operons using specialised transducing phages λp rbt λp and rbt dal.. J Mol Biol 132,:435–170
    [Google Scholar]
  18. Neumann, B., Pospiech, A., Schairer, H. U. (1992); Rapid isolation of genomic DNA from Gram-negative bacteria.. Trends Genet 8,:332–333
    [Google Scholar]
  19. Nobelmann, B., Lengeler, J. W. (1996); Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism.. J Bacteriol 178,:6790–6795
    [Google Scholar]
  20. Persson, B., Jeffery, B., JOrnvall, H. (1991a); Different segment similarities in long-chain dehydrogenases.. Biochem Biophys Res Commun 177,:218–233
    [Google Scholar]
  21. Persson, B., Krook, M., Jörnvall H. (1991b); Characteristics of short-chain alcohol dehydrogenases and related enzymes.. Eur J Biochem 200,:537–543
    [Google Scholar]
  22. Reiner, A. M. (1975); Genes for ribitol and D-arabitol catabolism in Escherichia coli: their loci in Escherichia coli C and absence in K-12 and B strains.. J Bacteriol 123,:530–536
    [Google Scholar]
  23. Rigby, P. W. J., Gething, M. J., Hartley B. S. (1976); Construction of intergeneric hybrids using bacteriophage P1CM: transfer of the Klebsiella aerogenes ribitol dehydrogenase gene to Escherichia coli. J Bacteriol 125,:728–738
    [Google Scholar]
  24. van Rooijen, R. J., de Vos V. M. (1990); Molecular cloning, transcriptional analysis and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis.. J Biol Chem 265,:18499–18503
    [Google Scholar]
  25. Saiki, R. S., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., Erlich, H. A. (1988); Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.. Science 239,:487–491
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual., 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Scangos, G. A., Reiner, A. M. (1978); Ribitol and D-arabitol catabolism in Escherichia coli.. J Bacteriol 134,:492–500
    [Google Scholar]
  28. Scangos, G. A., Reiner, A. M. (1979); A unique pattern of toxic synthesis in pentitol catabolism: implications for evolution.. J Mol Evol 12,:189–195
    [Google Scholar]
  29. Sprenger, G. A., Lengeler, J. W. (1984); L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis towards sorbose.. J Bacteriol 157,:39–45
    [Google Scholar]
  30. Tabor, S., Richardson, C. C. (1985); A bacteriophage T7 RNA polymerase⁄promotor system for controlled exclusive expression of specific genes.. Proc Natl Acad Sci USA 82,:1074–1078
    [Google Scholar]
  31. Tanaka, S., Lerner, S. A., Lin, E. C. C. (1967); Replacement of a phosphoenol-pyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide linked dehydrogenase for the utilization of mannitol.. J Bacteriol 93,:642–648
    [Google Scholar]
  32. Weickert, M. J., Adhya, S. (1992); Family of bacterial regulators homologous to Gal and Lac repressors.. J Biol Cbem 267,:15869–15874
    [Google Scholar]
  33. Woodward, M. J., Charles, H. P. (1983); Polymorphism in Escherichia coli: rtl atl and gat regions behave as chromosomal alternatives.. J Gen Microbiol 129,:75–84
    [Google Scholar]
  34. Wu, J. C., Anderton Loviny, T., Smith, C. A., Hartley, B. S. (1985); Structure of wild-type and mutant repressors and of the control region of the rbt operon of Klebsiella aerogenes.. EMBO J 4,:1339–1344
    [Google Scholar]
  35. Wu, T. T., Lin, E. C. C., Tanaka, S. (1968); Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel source of carbon.. J Bacteriol 96,:447–456
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-6-1631
Loading
/content/journal/micro/10.1099/00221287-144-6-1631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error