1887

Abstract

A soil bacterium, designated AN103, was isolated based on its ability to grow on ferulic acid as a sole source of carbon and energy. In addition, this strain was found to metabolize a number of related phenolic substrates which contained a hydroxyl group at the position of the aromatic ring. During growth on ferulic acid, transient accumulation of vanillic acid and trace amounts of protocatechuic acid were detected in the culture medium. Washed cells grown on ferulic acid readily oxidized vanillin, vanillic acid and protocatechuic acid, the three putative intermediates of the metabolic pathway. The side-chain cleavage of ferulic acid to produce vanillin was demonstrated in vitro for the first time and this enzyme-catalysed reaction was shown to have an essential requirement for CoASH, ATP and MgCl. This conversion involved a two-step process involving a CoA ligase followed by the side-chain cleavage. The addition of NAD increased the oxidation of vanillin to vanillic acid and had an overall effect of increasing the rate of ferulic acid cleavage. The application of C-NMR studies revealed acetyl-CoA as the C side-chain cleavage product. High levels of inducible ferulate-CoA ligase and NAD-linked vanillin dehydrogenase were detected and a novel pathway for ferulic acid metabolism in this organism is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1397
1998-05-01
2021-05-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1397.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1397&mimeType=html&fmt=ahah

References

  1. Ander P., Eriksson K. E. (1978); Lignin degradation and utilisation by microorganisms.. Prog Ind Microbiol 14:1–58
    [Google Scholar]
  2. Andreoni V., Galli E., Galliani G. (1984); Metabolism of ferulic acid by a facultatively anaerobic strain of Pseudomonas cepacia.. Systematic and Applied Microbiology 5:(3)299–304 [CrossRef]
    [Google Scholar]
  3. Andreoni V., Bernasconi S., Bestetti G. (1995); Biotransformation of ferulic acid and related compounds by mutant strains of Pseudomonas fluorescens.. Appl Microbiol Biotechnol 42:(6)830–835 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. (1976); A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biocbem 72:(1–2)248–254 [CrossRef]
    [Google Scholar]
  5. Brunel F., Davison J. (1988); Cloning and sequencing of Pseudomonas gene encoding vanillate demethylase.. Journal of Bacteriology 170:(10)4924–4930 [CrossRef]
    [Google Scholar]
  6. Cartwright N. J., Buswell J. A. (1967); The separation of vanillate O-demethylase from protocatechuate 3,4-oxygenase by ultracentrifugation.. Biocbem J 105:767–770
    [Google Scholar]
  7. Cartwright N. J., Smith A. R. W. (1967); Bacterial attack on phenolic ethers. An enzyme system demethylating vanillic acid.. Biocbem J 102:826–840
    [Google Scholar]
  8. Casey J., Dobb R. (1992); Microbial routes to aromatic aldehydes.. Enzyme Microb Technol 14:(9)739–747 [CrossRef]
    [Google Scholar]
  9. Clausen M., Lamb C. J., Megnet R., Doerner P. W. (1994); PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccbaromyces cerevisiae.. Gene 142:(1)107–112 [CrossRef]
    [Google Scholar]
  10. Crawford D. L., Crawford R. L. (1980); Microbial degradation of lignin.. Enzyme Microb Tecbnol 2:(1)11–22 [CrossRef]
    [Google Scholar]
  11. Crawford D. L., Sutherland J. B., Pometto A. L. (1982); Production of an aromatic aldehyde oxidase by Streptomyces viridosporus.. Archives of Microbiology 131:(4)351–355 [CrossRef]
    [Google Scholar]
  12. Edlin D. A. N., Narbad A., Dickinson J. R., Lloyd D. (1995); The biotransformation of simple phenolic compounds by Brettano- myces anomalus.. Fems Microbiology Letters 125:(2–3)311–316 [CrossRef]
    [Google Scholar]
  13. French C. J., Vance C. P., Towers G. H. N. (1976); Conversion of p-coumaric acid to p-hydroxybenzoic acid by cell free extract of Polyporus hispidus.. Phytochemistry 15:(4)564–566 [CrossRef]
    [Google Scholar]
  14. Gurujeyalakshmi G., Mahadevan A. (1987); Dissimilation of ferulic acid by Bacillus subtilis.. Current Microbiology 16:(2)69–73 [CrossRef]
    [Google Scholar]
  15. Hagedorn S., Kaphammer B. (1994); Microbial biocatalysis in the generation of flavor and fragrance chemicals.. Annual Review of Microbiology 48:(1)773–800 [CrossRef]
    [Google Scholar]
  16. Henderson M. E. K. (1961); Isolation, identification and growth of some soil hyphomycetes and yeast-like fungi which utilise aromatic compounds related to lignin.. Journal of General Microbiology 26:(1)149–154 [CrossRef]
    [Google Scholar]
  17. Huang Z., Dostal L., Rosazza J. P. N. (1993); Microbial transformations of ferulic acid by Saccbaromyces cerevisiae and Pseudomonas fluorescens.. Appl Environ Microbiol 59:(7)2244–2250 [CrossRef]
    [Google Scholar]
  18. Huang Z., Dostal L., Rosazza J. P. N. (1994); Purification and characterization of a ferulic acid decarboxylase from Pseudomonas fluorescens.. Journal of Bacteriology 176:(19)5912–5918 [CrossRef]
    [Google Scholar]
  19. Ishikawa H., Schubert W. J., Nord F. F. (1963); Investigations on lignin and lignification, The degradation by Polyporus versicolor and Fomes fomentarius of aromatic compounds structurally related to softwood lignin by white rot fungi.. Arch Biocbem Biopbys 100:(1)131–139 [CrossRef]
    [Google Scholar]
  20. lyayi C. B., Dart R. K. (1982); The degradation of p-coumaryl alcohol by Aspergillus flavus.. Journal of General Microbiology 128:1473–1482
    [Google Scholar]
  21. Krieg N. R., Holt J. G. (1984); Bergey's Manual of Systematic Bacteriology.. vol. 1: Baltimore:: Williams & Wilkins;
    [Google Scholar]
  22. Labuda I. M., Keon K. A., Goers S. K. (1993) Microbial bioconversion process for the production of vanillin. Edited by Schreier P., Winterhalter P. Progress in Flavour Precursor Studies.. Carol Stream, IL:: Allured Publishing Corporation;477–482
    [Google Scholar]
  23. Narbad A., Hewlins M. J. E., Callely A. G. (1989); 13C-NMR studies of acetate and methanol metabolism by methylotrophic Pseudomonas strains.. Journal of General Microbiology 135:1469–1477
    [Google Scholar]
  24. Nazareth S., Mavinkurve S. (1986); Degradation of ferulic acid via 4-vinyl guaiacol by Fusarium solani (Mart).. Canadian Journal of Microbiology 32:(6)494–497 [CrossRef]
    [Google Scholar]
  25. Omori T., Hatakeyama K., Kodama T. (1988); Protocatechuic acid production from rraws-ferulic acid by Pseudomonas sp. HF- 1 mutants defective in protocatechuic acid catabolism.. Appl Microbiol Biotechnol 29:(5)497–500 [CrossRef]
    [Google Scholar]
  26. OtUk G. (1985); Degradation of ferulic acid by Escherichia coli.. Journal of Fermentation Technology 63:501–506
    [Google Scholar]
  27. Pearl J. A., Beyer D. L. (1951); Reactions of vanillin and its derivative compounds. XI. Cinnamic acids derived from vanillin and its related compounds.. Journal of Organic Chemistry 16:(2)216–220 [CrossRef]
    [Google Scholar]
  28. Provan G. J., Scobbie L., Chesson A. (1994); Determination of phenolic acids in plant cell walls by microwave digestion.. J Sci Food Agric 64:(1)63–65 [CrossRef]
    [Google Scholar]
  29. Rahouti M., Siegle-Murandi F., Steiman R., Eriksson K. E. (1989); Metabolism of ferulic acid by Paecilomyces variotti and Pestalotia palmarum.. Appl Environ Microbiol 55:(9)2391–2398 [CrossRef]
    [Google Scholar]
  30. Ribbons D. W. (1970); Stoichiometry of O-demethylase activity in Pseudomonas aeruginosa.. Febs Letters 8:(2)101–104 [CrossRef]
    [Google Scholar]
  31. Rhodes M. J. C., Wooltorton L. S. C. (1973); Formation of CoA esters of cinnamic acid derivatives by extracts of Brassica napo- brassica root tissue.. Phytochemistry 12:(10)2381–2387 [CrossRef]
    [Google Scholar]
  32. Rosazza J. P. N., Huang Z., Dostal L., Volm T., Rousseau B. (1995); Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product.. J Ind Microbiol 15,457—471.
    [Google Scholar]
  33. Sampaio J. P., van Uden N. (1991); Rhodotorula ferulica sp., a yeast that degrades ferulic acid and other phenolic compounds.. Systematic and Applied Microbiology 14:(2)146–149 [CrossRef]
    [Google Scholar]
  34. Sutherland J. B., Crawford D. L., Pometto A. L. (1983); Metabolism of cinnamic, p-coumaric and ferulic acids by Streptomyces setonii.. Can ] Microbiol 29:(10)1253–1257 [CrossRef]
    [Google Scholar]
  35. Toms A., Wood J. M. (1970); The degradation of trans-ferulic acid by Pseudomonas acidovorans.. Biochemistry 9:(2)337–343 [CrossRef]
    [Google Scholar]
  36. Vollmer K. O., Reisener H. J., Grisebach H. (1965); The formation of acetic acid from p-hydroxycinnamic acid during its degradation to p-hydroxybenzoic acid in wheat shoot.. Biochem Biopbys Res Commun 21:(3)221–225 [CrossRef]
    [Google Scholar]
  37. Yazaki K., Heide L., Tabata M. (1991); Formation of p- hydroxybenzoic acid from p-coumaric acid by cell free extract of Lithospertnum erythrorhizon cell culture.. Phytochemistry 30:(7)2233–2236 [CrossRef]
    [Google Scholar]
  38. Zenk M. H., Ulbrich B., Brusse J., Stockigt J. (1980); Procedure for enzymatic synthesis and isolation of cinnamoyl-CoA thiolesters using bacterial system.. Analytical Biochemistry 101:(1)182–187 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1397
Loading
/content/journal/micro/10.1099/00221287-144-5-1397
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error