Molecular characterization of an autolytic amidase of EGD Free

Abstract

The gene encoding a 102 kDa autolysin has been cloned from an expression library of EGD genomic DNA, using a direct screening protocol. The encoded protein has two domains, an N-terminal enzymic domain showing a high level of homology to the amidase domain of the major autolysin () of , and a C-terminal, putative cell-wall-binding domain containing four imperfect direct repeats. In order to examine the role of the enzyme, the autolysin-encoding gene was insertionally inactivated by site-specific integration of a temperature sensitive plasmid. The enzyme accounts for 66% of the total lytic enzyme activity when walls are used as substrate and several of the major autolytic bands are missing on renaturing gels when compared to the wild-type. The enzyme does not appear to be directly involved in cell separation but has a role in motility. Characterization of the recombinant enzyme expressed in has revealed it to be an amidase and to be able to hydrolyse a range of peptidoglycan substrates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1359
1998-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1359.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1359&mimeType=html&fmt=ahah

References

  1. Atrih, A., Zttllner, P., Allmaier G, Foster, S. J. (1996); Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation.. Journal of Bacteriology 178:(21)6173–6183 [View Article]
    [Google Scholar]
  2. Berry, A. M., Paton, J. C., Hansman, D. (1992); Effect of insertional inactivation of the genes encoding pneumolysin and autolysin on the virulence of Streptococcus pneumoniae type 3.. Microb Patbog 12:(2)87–93 [View Article]
    [Google Scholar]
  3. Blackman, S. A., Smith, T. J., Foster, S. J. (1998); The role of autolysins during vegetative growth of Bacillus subtilis 168.. Microbiology 144:(1)73–82 [View Article]
    [Google Scholar]
  4. Braun, L., Dramsi, S., Dehoux, P., Bierne, H., Lindahl, G., Cossart, P. (1997); InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association.. Molecular Microbiology 25:(02)285–294 [View Article]
    [Google Scholar]
  5. Chakraborty, T., Leimeister-Wachter, M., Domann, E., Hartl, M., Goebel, W. et al. (1992); Co-ordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene.. Journal of Bacteriology 174:(2)568–574 [View Article]
    [Google Scholar]
  6. Chu, C.-P., Kariyama, R., Daneo-Moore, L., Shockman, G. D. (1992); Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae.. Journal of Bacteriology 174:(5)1619–1625 [View Article]
    [Google Scholar]
  7. Dramsi, S., Biswas, I., Maguin, E, Braun L., Mastroeni, L., Cossart P. (1995); Entry of Listeria monocytogenes into hepatocytes requires expression of InlB, a surface protein of the internalin multigene family.. Molecular Microbiology 16:(2)251–261 [View Article]
    [Google Scholar]
  8. Dramsi, S., Dehoux, P., Lebrun, M., Goossens, P., Cossart, P. (1997); Identification of four new members of the internalin multigene family in Listeria monocytogenes EGD.. InfectImmun 65:1615–1625
    [Google Scholar]
  9. Farber, J. M., Peterkin P. I. (1991); Listeria monocytogenes, a food borne pathogen.. Microbiological Reviews 55:(3)476–511 [View Article]
    [Google Scholar]
  10. Foster, S. J. (1991); Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2.. Journal of General Microbiology 137:(8)1987–1998 [View Article]
    [Google Scholar]
  11. Foster, S. J. (1992); Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis.. Journal of Bacteriology 174:(2)464–470 [View Article]
    [Google Scholar]
  12. Foster, S. J. (1993); Molecular analysis of three major wall- associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein.. Molecular Microbiology 8:(2)299–310 [View Article]
    [Google Scholar]
  13. Foster, S. J. (1995); Molecular characterisation and functional analysis of the major autolysin of Staphylococcus aureus 8325/4.. Journal of Bacteriology 177:(19)5723–5725 [View Article]
    [Google Scholar]
  14. Garcia, J. L., Diaz, E., Romero, A., Garcia, P. (1994); Carboxyterminal deletion analysis of the major pneumococcal autolysin.. Journal of Bacteriology 176:(13)4066–4072 [View Article]
    [Google Scholar]
  15. Ghuysen, J.-M., Tipper, D. J., Strominger J. L. (1966); Enzymes that degrade cell walls.. Methods in Enzymology, Vol 46: Research on Nitrification and Related Processes, Pt B 8:685–699
    [Google Scholar]
  16. Hbltje, J.-V. (1995); From growth to autolysis: the murein hydrolases in Escherichia coli.. Archives of Microbiology 164:(4)243–254 [View Article]
    [Google Scholar]
  17. Kuhn, M., Goebel, W. (1989); Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells.. Infection and Immunity 57:(1)55–61 [View Article]
    [Google Scholar]
  18. Kuroda, A., Sekiguchi, J. (1991); Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene.. Journal of Bacteriology 173:(22)7304–7312 [View Article]
    [Google Scholar]
  19. Kuroda, A., Sugimoto, Y., Funahashi, T., Sekiguchi, J. (1992); Genetic structure, isolation and characterisation of a Bacillus licheniformis cell wall hydrolase.. Molecular & General Genetics 234:(1)129–137 [View Article]
    [Google Scholar]
  20. Li, Z., Clarke, A. J., Beveridge T. J. (1996); A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division, and secretion in surface membrane vesicles.. Journal of Bacteriology 178:(9)2479–2488 [View Article]
    [Google Scholar]
  21. Loessner, M. J., Wendlinger, G., Scherer, S. (1995); Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes.. Molecular Microbiology 16:(6)1231–1241 [View Article]
    [Google Scholar]
  22. McLaughlan, A. M., Foster, S. J. (1997); Characterisation of the peptidoglycan hydrolases of Listeria monocytogenes EGD.. Fems Microbiology Letters 152:(1)149–154 [View Article]
    [Google Scholar]
  23. Mani, N., Baddour, L. M., Offutt, D. Q., Vijaranakul, U., Nadakavukaren, M. J. et al. (1994); Autolysis-defective mutant of Staphylococcus aureus: pathological considerations, genetic mapping and electron microscopic studies.. Infection and Immunity 62:(4)1406–1409 [View Article]
    [Google Scholar]
  24. Margot, P., Roten, C.-A. H., Karamata, D. (1991); N-Acetylmuramoyl-L-alanine amidase assay based on specific radioactive labelling of muropeptide L-alanine: quantification of the enzyme activity in the autolysin deficient Bacillus subtilis 168, flaD strain.. Analytical Biochemistry 198:(1)15–18 [View Article]
    [Google Scholar]
  25. Oshida, T., Sugai, M., Komatsuzawa, H., Hong, Y.-M., Suginaka, H. et al. (1995); A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-jff-N-acetylglucosaminidase domain: cloning, sequence analysis and characterisation.. Proc Natl Acad Sci USA 92:(1)285–289 [View Article]
    [Google Scholar]
  26. Park, S. F., Stewart, G. S. A. B. (1990); High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin treated cells.. Gene 94:(1)129–132 [View Article]
    [Google Scholar]
  27. Rogers, H. J., Perkins, H. R., Ward, J. B. (1980) Structure of peptidoglycan. . In Microbial Cell Walls and Membranes. London:: Chapman & Hall,;190–214
    [Google Scholar]
  28. Romero, A., López, R., Garcia, P. (1990); Sequence of the Streptococcus pneumoniae bacteriophage HB-3 amidase reveals high homology with the major host autolysin.. Journal of Bacteriology 172:(9)5064–5070 [View Article]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual., 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Smith, T. J., Foster, S. J. (1995); Characterisation of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168.. / Bacteriol 177:(13)3855–3862 [View Article]
    [Google Scholar]
  31. Smith, T. J., Blackman, S. A., Foster S. J. (1996); Peptidoglycan hydrolases of Bacillus subtilis 168.. Microbial Drug Resistance 2:(1)113–118 [View Article]
    [Google Scholar]
  32. Valisena, S., Varaldo, P. E., Satta, G. (1991); Staphylococcal endo-/i-N-acetylglucosaminidase inhibits response of human lymphocytes to mitogens and interferes with production of antibodies in mice.. Journal of Clinical Investigation 87:(6)1969–1976 [View Article]
    [Google Scholar]
  33. Ward, J. B., Williamson, R. (1984) Bacterial autolysins: specificity and function.. Edited by Nombela, C. Microbial Wall Synthesis and Function. Amsterdam:: Elsevier,;159–166
    [Google Scholar]
  34. Wuenscher, M. D., Köhier, S., Bubert, A., Gerike, U., Goebel, W. (1993); The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product p60, has bacteriolytic activity.. Journal of Bacteriology 175:(11)3491–3501 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1359
Loading
/content/journal/micro/10.1099/00221287-144-5-1359
Loading

Data & Media loading...

Most cited Most Cited RSS feed