1887

Abstract

Amino acid sequences of two of the three bacteriocins from TA33a were determined and their sequence-structure relationships investigated. Leucocin B-TA33a consists of 31 amino acid residues, with a molecular mass of 3466 Da. Leucocin B-TA33a does not belong to the pediocin family of bacteriocins, but shares 62% homology with mesenterocin 52B. A partial sequence of 36 amino acids of leucocin C-TA33a (4598 Da) was determined. Leucocin C-TA33a belongs to the class II bacteriocins having the consensus YGNGV motif. The third bacteriocin, leucocin A-TA33a, is identical to leucocin A-UAL 187. Circular dichroism spectra of the leucocins in aqueous solution and micellar SDS indicated that they undergo a structural transition when in a membrane-mimicking environment. Theoretical predictions from circular dichroism data suggest that leucocins A-, B- and C-TA33a adopt a β-structure (48%) in membrane-mimicking environments. Sequence alignments and secondary structure predictions for the N-terminus of leucocins A- and C-TA33a predicted that Cys-9 and Cys-14 are connected by a disulfide bridge and form two β-strands.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1343
1998-05-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1343.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1343&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. (1990); Basic local alignment search tool.. J 215:(3)403–410 [View Article]
    [Google Scholar]
  2. Andrade, M. A., Chacon, P., Merelo, J. J., Moran, F. (1993); Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network.. Protein Engineering 6:(4)383–390 [View Article]
    [Google Scholar]
  3. Aymerich, T., Holo, H., Havarstein, L. S., Hugas, M., Garriga, M. et al. (1996); Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins.. Appl Environ Microbiol 62:(5)1676–1682 [View Article]
    [Google Scholar]
  4. Chen, Y., Shapira, R., Eisenstein, M., Montville, T. J. (1997); Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure.. Appl Environ Microbiol 63:(2)524–531 [View Article]
    [Google Scholar]
  5. Deleage, G., Roux B. (1987); An algorithm for protein secondary structure prediction based on class prediction.. Protein Engineering 1:(4)289–294 [View Article]
    [Google Scholar]
  6. Felix, J. V., Papathanasopoulos, M. A., Smith, A. A., von Holy, A., Hastings, J. W. (1994); Characterization of leucocin B-TAlla: a bacteriocin from Leuconostoc carnosum TAlla isolated from meat.. Current Microbiology 29:(4)207–212 [View Article]
    [Google Scholar]
  7. Fleury, Y., Dayem, M. A., Montagne, J. J., Chaboisseau, E., Le Caer, J. P. et al. (1996); Covalent structure, synthesis, and structure-function studies of mesentericin Y10537, a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides.. Journal of Biological Chemistry 271:(24)14421–14429 [View Article]
    [Google Scholar]
  8. Freund, S., Jung, G., Gibbons, W. A., Sahl, H.-G. (1991) NMR and circular dichroism studies on Pep5.. Edited by Jung, G., Sahl, H.-G. Nisin and Novel Lantibiotics. Leiden:: ESCOM,;103–112
    [Google Scholar]
  9. Geourjon, C., Deleage, G. (1995); sopma: significant improvements in protein secondary structure prediction from multiple alignments.. Computer Applications in The Biosciences 11:681–684
    [Google Scholar]
  10. Gibrat, J. F., Gamier, J., Robson, B. (1987); Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs.. Journal of Molecular Biology 198:(3)425–443 [View Article]
    [Google Scholar]
  11. Hastings, J. W., Sailer, M., Johnson, K., Roy, K. L., Vederas, J. C., Stiles, M. E. (1991); Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum.. Journal of Bacteriology 173:(23)7491–7500 [View Article]
    [Google Scholar]
  12. Hechard, Y., D6rijard, B., Lettelier, F., Cenatiempo, Y. (1992); Characterization and purification of mesentericin Y105, an antiListeria bacteriocin from Leuconostoc mesenteroides.. Journal of General Microbiology 138:(12)2725–2731 [View Article]
    [Google Scholar]
  13. Henderson, J. T., Chopko, A. L., Wassenaar, P. D. (1992); Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC1.0.. Archives of Biochemistry and Biophysics 295:(1)5–12 [View Article]
    [Google Scholar]
  14. Henkel, T., Sailer, M., Helms, G. L., Stiles, M. E., Vederas, J. C. (1992); NMR assignment of leucocin A, a bacteriocin from Leuconostoc gelidum, supported by a stable isotope labelling technique for peptides and proteins.. Journal of The American Chemical Society 114:(5)1898–1900 [View Article]
    [Google Scholar]
  15. Hoick, A. (1992); Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb 706.. Journal of General Microbiology 138:(12)2715–2720 [View Article]
    [Google Scholar]
  16. Hoick, A. L., Axelsson, L., Schillinger, U. (1994); Purification and cloning of piscicolin 61, a bacteriocin from Carnobacterium piscicola LV61.. Current Microbiology 29:(2)63–68 [View Article]
    [Google Scholar]
  17. Jack, R. W., Wan, J., Gordon, J., Harmark, K., Davidson, B. E. et al. (1996); Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126.. Appl Environ Microbiol 62:(8)2897–2903 [View Article]
    [Google Scholar]
  18. Johnson, W. C. (1990); Protein secondary structure and circular dichroism - a practical guide.. Proteins-structure Function and Bioinformatics 7:(3)205–214 [View Article]
    [Google Scholar]
  19. Klaenhammer, T. R. (1993); Genetics of bacteriocins produced by lactic acid bacteria.. Fems Microbiology Reviews 12:(1–3)39–86 [View Article]
    [Google Scholar]
  20. Kneller, D. G., Cohen, F. E., Langridge, R. (1990); Improvement in protein secondary structure prediction by an enhanced neural network.. Journal of Molecular Biology 214:(1)171–182 [View Article]
    [Google Scholar]
  21. Larsen, A. G., Vogensen, F. K., Josephsen, J. (1993); Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus M1401.. Journal of Applied Bacteriology 75:(2)113–122 [View Article]
    [Google Scholar]
  22. Levin, J. M., Robson, B., Gamier, J. (1986); An algorithm for secondary structure determination in proteins based on sequence similarity.. Febs Letters 205:(2)303–308 [View Article]
    [Google Scholar]
  23. Manavalan, P., Johnson, W. C. (1987); Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra.. Analytical Biochemistry 167:(1)76–85 [View Article]
    [Google Scholar]
  24. Merelo, J. J., Andrade, M. A., Prieto, A., Moran, F. (1994); Proteinotopic feature maps.. Neurocomputing 6:(4)443–454 [View Article]
    [Google Scholar]
  25. Merril, C. R. (1990); Gel-staining techniques.. Methods in Enzymology, Vol 46: Research on Nitrification and Related Processes, Pt B 182:477–488
    [Google Scholar]
  26. Nissen-Meyer, J., Nes, I. F. (1997); Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action.. Archives of Microbiology 167:(2–3)67–77 [View Article]
    [Google Scholar]
  27. Nissen-Meyer, J., Holo, H., Havarstein, L. S., Sletten, K., Nes, I. F. (1992); A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides.. Journal of Bacteriology 174:(17)5686–5692 [View Article]
    [Google Scholar]
  28. Papathanasopoulos, M. A., Krier, F., Revol-Junelles, A.-M., Lefebvre, G., Le Caer, J. P. et al. (1997); Multiple bacteriocin production by Leuconostoc mesenteroidesTA33a, and other Leuconostoc/Weissella strains. Current Microbiology 35331–335
    [Google Scholar]
  29. Quadri, L. E.„ Sailer, Roy, M., K., L., Vederas, J. C., Stiles, M. E. (1994); Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B.. Journal of Biological Chemistry 269:(16)12204–12211 [View Article]
    [Google Scholar]
  30. Revol-Junelles, A.-M., Lefebvre, G. (1996); Purification and N- terminal amino acid sequence of dextranicin 24, a bacteriocin of Leuconostoc sp.. Current Microbiology 33:(2)136–137 [View Article]
    [Google Scholar]
  31. Revol-Junelles, A.-M., Mathis, R., Krier, F., Fleury Y., Delfour, A., Lefebvre, G. (1996); Leuconostoc mesenteroides subsp. mesenteroides FR52 synthesises two distinct bacteriocins.. Letters in Applied Microbiology 23:(2)120–124 [View Article]
    [Google Scholar]
  32. Rost, B., Sander, C. (1994); Combining evolutionary information and neural networks to predict protein secondary structure.. Proteins Struct Fund Genet 19:(1)55–72 [View Article]
    [Google Scholar]
  33. Sailer, M., Helms, G. L., Henkel, T., Niemczura, W. P., Stiles, M. E., Vederas, J. C. (1993); and 13C-labelled media from Anabaena sp. for universal isotopic labelling of bacteriocins: NMR resonance assignments of leucocin A from Leuconostoc gelidum and nisin A from Lactococcus lactis.. Biochemistry 32:(1)310–318 [View Article]
    [Google Scholar]
  34. Schagger, H., Von Jagow, G. (1987); Tricine-sodium dode-cylsulphate-polyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa.. Analytical Biochemistry 166:(2)368–379 [View Article]
    [Google Scholar]
  35. Tichaczek, P. S., Vogel, R. F., Hammes, W. P. (1993); Cloning and sequencing of cur A encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH 1174.. Archives of Microbiology 160:(4)279–283 [View Article]
    [Google Scholar]
  36. Tichaczek, P. S., Vogel, R. F., Hammes, W. P. (1994); Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673.. Microbiology 140:(2)361–367 [View Article]
    [Google Scholar]
  37. Van den Hooven, H. W., Fogolari, F., Rollema, H. S., Konings, R. N. H., Hilbers, C. W. et al. (1993); NMR and circular dichroism studies of the lantibiotic nisin in non-aqueous environments. Febs Letters 319189–194
    [Google Scholar]
  38. Woody, R. W. (1995); Circular dichroism.. Methods in Enzymology, Vol 46: Research on Nitrification and Related Processes, Pt B 246:34–71
    [Google Scholar]
  39. Yang, R., Johnson, M. C., Ray, B. (1992); Novel method to extract large amounts of bacteriocins from lactic acid bacteria.. Appl Environ Microbiol 58:(10)3355–3359 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1343
Loading
/content/journal/micro/10.1099/00221287-144-5-1343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error