1887

Abstract

The course of nucleoid movement during and upon release from protein synthesis inhibition by chloramphenicol in filaments of (Ts) was analysed. Cells were grown at 42 °C in glucose minimal medium for two mass doublings and were treated with chloramphenicol to generate fusion (coalescence) of the nucleoids. Upon release from protein synthesis inhibition, the large distance between the border of the fused nucleoids and the cell poles immediately decreased, before full recovery of the rates of mass growth and length increase at 30 °C. This indicates that nucleoids can reoccupy the DNA-free cell ends independently of cell elongation. During filamentation at 42 °C, the cells established initial constrictions at midcell and at one-quarter and three-quarter positions. Nevertheless, divisions only started 75 min after chloramphenicol removal at 30 °C, when most nucleoids had moved back into the vacated cell ends. No ‘guillotine-like’ constrictions at the site of the nucleoids occurred.This suggests that segregating nucleoids postpone division recovery at previously established sites. The results are discussed in the light of a working model for transcription/translation-mediated chromosome segregation and nucleoid occlusion of cell division.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1309
1998-05-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1309.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1309&mimeType=html&fmt=ahah

References

  1. Addinall, S. G., Lutkenhaus, J. (1996); FtsA is localized to the septum in an FtsZ-dependent manner.. Journal of Bacteriology 178:(24)7167–7172 [CrossRef]
    [Google Scholar]
  2. Addinall, S. G., Bi, E., Lutkenhaus, J. (1996); FtsZ ring formation in fts mutants.. Journal of Bacteriology 178:(13)3877–3884 [CrossRef]
    [Google Scholar]
  3. Addinall, S. G., Cao, C., Lutkenhaus, J. (1997); Temperature shift experiments with an ftsZ84(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated.. Journal of Bacteriology 179:(13)4277–4284 [CrossRef]
    [Google Scholar]
  4. Akerlund, T., Nordstrom K, Bernander, R. (1995); Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli.. Journal of Bacteriology 177:(23)6791–6797 [CrossRef]
    [Google Scholar]
  5. Begg, K. J., Donachie, W. D. (1991); Experiments on chromosome partitioning and positioning in Escherichia coli.. Neu> Biol 3:475–486
    [Google Scholar]
  6. Bi, E., Lutkenhaus, J. (1991); FtsZ ring structure associated with division in Escherichia coli.. Nature 354:(6349)161–164 [CrossRef]
    [Google Scholar]
  7. Bremer, H., Churchward, G. (1977); Control of cyclic chromosome replication in Escherichia coli.. Microbiological Reviews 55:(3)459–475 [CrossRef]
    [Google Scholar]
  8. Cook, W. R., Rothfield, L. I. (1994); Early stages in development of the Escherichia coli cell-division site.. Molecular Microbiology 14:(3)485–195 [CrossRef]
    [Google Scholar]
  9. Daneo-Moore, L., Higgins, M. L. (1972); Morphokinetic reaction of Streptococcus faecalis (ATCC 9790) cells to the specific inhibition of macromolecular synthesis: nucleoid condensation on the inhibition of protein synthesis.. Journal of Bacteriology 109:(3)1210–1220 [CrossRef]
    [Google Scholar]
  10. Donachie, W. D. (1993); The cell cycle of Escherichia coli.. Annual Review of Microbiology 47:(1)199–230 [CrossRef]
    [Google Scholar]
  11. Harrington, E. W., Trun, N. J. (1997); Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor.. Journal of Bacteriology 179:(7)2435–2439 [CrossRef]
    [Google Scholar]
  12. Hiraga, S. (1993); Chromosome partition in Escherichia coli.. Current Opinion in Genetics & Development 5:(5)789–801 [CrossRef]
    [Google Scholar]
  13. Hiraga, S., Ogura, T., Niki, H., Ichinose, C., Mori, H. (1990); Positioning of replicated chromosomes in Escherichia coli.. Journal of Bacteriology 172:(1)31–39 [CrossRef]
    [Google Scholar]
  14. Jaffe, A., D'Ari, R., Norris, V. (1986); SOS-independent coupling between DNA replication and cell division in Escherichia coli.. Journal of Bacteriology 165:(1)66–71 [CrossRef]
    [Google Scholar]
  15. Khattar, M. M., Addinall, S. G., Stedul K.H., Boyle, D. S., Lutkenhaus J et al. (1997); Two polypeptide products of the Escherichia coli cell division gene ftsW and a possible role for FtsW in FtsZ function.. ] Bacteriol 179:(3)784–793 [CrossRef]
    [Google Scholar]
  16. Kleppe, K., Ovrebd, S., Lossius, i. (1979); The bacterial nucleoid.. Journal of General Microbiology 112:(1)1–13 [CrossRef]
    [Google Scholar]
  17. Luirink, J., Dobberstein, B. (1994); Mammalian and Escherichia coli signal recognition particles.. Molecular Microbiology 11:(1)9–13 [CrossRef]
    [Google Scholar]
  18. Lynch, A. S., Wang J. C. (1993); Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I.. / Bacteriol 175:(6)1645–1655 [CrossRef]
    [Google Scholar]
  19. Mendelson, N. H. (1972); Deoxyribonucleic acid distribution in Bacillus subtilis independent of cell elongation.. Journal of Bacteriology 111:(1)156–162 [CrossRef]
    [Google Scholar]
  20. Mohl, D. A., Gober, J. W. (1997); Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus.. Cell 88:675–684
    [Google Scholar]
  21. Mulder, E., Woldringh, C. L. (1989); Actively replicating nucleoids influence the positioning of division sites in DNA-less cell forming filaments of Escherichia coli.. Journal of Bacteriology 171:(8)4303–4314 [CrossRef]
    [Google Scholar]
  22. Murphy, L. D., Zimmerman, S. B. (1995); Condensation and cohesion of A DNA in cell extracts and other media: implications for the structure and function of DNA in prokaryotes.. Biophysical Chemistry 57:(1)71–92 [CrossRef]
    [Google Scholar]
  23. Nanninga, N. (1991); Cell division and peptidoglycan assembly in Escherichia coli.. Molecular Microbiology 5:(4)791–795 [CrossRef]
    [Google Scholar]
  24. Niki, H., Jaffé, A., Imamura, R., Ogura, T., Hiraga, S. (1991); The new gene mukB codes for a 177 kDa protein with coiled-coil domains involved in chromosome partitioning of E. coli.. Embo Journal 10:(1)183–193 [CrossRef]
    [Google Scholar]
  25. Norris, V. (1995); Hypothesis: chromosome separation in Escherichia coli involves autocatalytic gene expression, translation and membrane-domain formation.. Molecular Microbiology 16:(6)1051–1057 [CrossRef]
    [Google Scholar]
  26. Norris, V., Madsen M. S. (1995); Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model.. Journal of Molecular Biology 253:(5)739–748 [CrossRef]
    [Google Scholar]
  27. Pogliano, J., Pogliano, K., Weiss, D. S., Losick, R., Beckwith J. (1997); Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites.. Proc Natl Acad Sci USA 94:(2)559–564 [CrossRef]
    [Google Scholar]
  28. Schaechter, M., Laing V. O. (1961); Direct observation of fusion of bacterial nuclei.. Journal of Bacteriology 81:(4)667–668 [CrossRef]
    [Google Scholar]
  29. Taschner, P. E. M., Huis, P. G., Pas, E., Woldringh, C. L. (1988); Division behavior and shape changes in isogenic ftsZ, ftsQ, ftsA, pbpB and ftsE cell division mutants of Escherichia coli during temperature shift experiments.. Journal of Bacteriology 170:(4)1533–1540 [CrossRef]
    [Google Scholar]
  30. Van Helvoort, J. M. L. M., Woldringh C. L. (1994); Nucleoid partitioning in Escherichia coli during steady-state growth and upon recovery from chloramphenicol treatment.. Molecular Microbiology 13:(4)577–583 [CrossRef]
    [Google Scholar]
  31. Van Helvoort, J. M. L. M., Kool, J., Woldringh C. L. (1996); Chloramphenicol causes fusion of separated nucleoids in Escherichia coli K-12 cells and filaments.. Journal of Bacteriology 178:(14)4289–4293 [CrossRef]
    [Google Scholar]
  32. Vischer, N. O. E., Huis, P. G., Woldringh, C. L. (1994); Object- image: an interactive image analysis program using structured point collection.. Binary 6:160–166
    [Google Scholar]
  33. Webb, C. D., Teleman, A., Gordon, S., Straight A., Belmont, A., Chi-Hong Lin, D., Grossman, A.D., Wright, A., Losick R. (1997); Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88667–674
    [Google Scholar]
  34. Wheeler, R. T., Shapiro L. (1997); Bacterial chromosome replication: is there a mitotic apparatus ?. Cell 88:(5)577–579 [CrossRef]
    [Google Scholar]
  35. Wientjes, F. B., Nanninga N. (1989); Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge.. Journal of Bacteriology 171:(6)3412–3419 [CrossRef]
    [Google Scholar]
  36. Woldringh, C. L., Nanninga, N. (1985) Structure of nucleoid and cytoplasm in the intact cell. Edited by Nanninga, N. Molecular Cytology of Escherichia coli New York:: Academic Press,;161–197
    [Google Scholar]
  37. Woldringh, C. L., Mulder, E., Huis, P. G., Vischer N. O. E. (1991); Toporegulation of bacterial division according to the nucleoid occlusion model.. Research in Microbiology 142:(2–3)309–320 [CrossRef]
    [Google Scholar]
  38. Woldringh, C. L., Zaritsky, A., Grover N. B. (1994); Nucleoid partitioning and the division plane in Escherichia coli.. Journal of Bacteriology 176:(19)6030–6038 [CrossRef]
    [Google Scholar]
  39. Woldringh, C. L., Jensen, P. R., Westerhoff H. V. (1995a); Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces ?. Fems Microbiology Letters 131:(3)235–242 [CrossRef]
    [Google Scholar]
  40. Woldringh, C. L., Fluiter, K., Huis P. G. (1995b); Production of senescent cells of Saccharomyces cerevisiae by centrifugal elutriation.. Yeast 11:(4)361–369 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1309
Loading
/content/journal/micro/10.1099/00221287-144-5-1309
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error