1887

Abstract

The extracellular polysaccharide alginate has been widely associated with chronic infections in the cystic fibrosis lung. However, it is clear that alginate biosynthesis is a more widespread phenomenon. Alginate plays a key role as a virulence factor of plant-pathogenic pseudomonads, in the formation of biofilms and with the encystment process of spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1133
1998-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1133.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1133&mimeType=html&fmt=ahah

References

  1. Aarons, S. J., Sutherland, I. W., Chakrabarty, A. M., Gallagher, M. P. (1997); A novel gene, algK, from the alginate biosynthetic cluster of Pseudomonas aeruginosa.. Microbiology 143:(2)641–652 [View Article]
    [Google Scholar]
  2. Baker, N. R. (1990) Adherence and the role of alginate. Edited by Gacesa, P., Russell, N. J. Pseudomonas Infection and Alginates — Biochemistry, Genetics and Pathology London:: Chapman & Hall,;95–108
    [Google Scholar]
  3. Bayer, A. S., Park, S., Ramos, M. C., Nast, C. C., Eftekhar, F. et al. (1992); Effects of alginase on the natural-history and antibiotic-therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa.. Infection and Immunity 60:(10)3979–3985 [View Article]
    [Google Scholar]
  4. Baynham, P. J., Wozniak, D. J. (1996); Identification and characterization of algZ, an tf/gT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription.. Molecular Microbiology 22:(1)97–108 [View Article]
    [Google Scholar]
  5. Beale, J. M., Foster, J. L., Berry, A., DeVault, J. D., Chakrabarty, A. M. (1996); Carbohydrate fluxes into alginate biosynthesis in Azotobacter vinelandii NCIB, 8789 - nmr investigations of the triose pools, High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains.. Biochemistry 35:(14)4492–4501 [View Article]
    [Google Scholar]
  6. Boucher, J. C., Martinez-Salazar, J., Schurr, M. J., Mudd, M. H., Yu, H. et al. (1996); Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine-protease HtrA.. Journal of Bacteriology 178:(2)511–523 [View Article]
    [Google Scholar]
  7. Boyd, A., Chakrabarty, A. M. (1994); Role of alginate lyase in cell detachment of Pseudomonas aeruginosa.. Appl Environ Microbiol 60:(7)2355–2359 [View Article]
    [Google Scholar]
  8. Boyd, A., Chakrabarty, A. M. (1995); Pseudomonas aeruginosa biofilms: role of alginate exopolysaccharide.. Journal of Industrial Microbiology 15:(3)162–168 [View Article]
    [Google Scholar]
  9. Boyd, A., Ghosh, M., May, T. B., Shinabarger, D., Keogh, R. et al. (1993); Sequence of the algL gene of Pseudomonas aeruginosa and purification of its alginate lyase product.. Gene 131:(1)1–8 [View Article]
    [Google Scholar]
  10. Campos, M.-E., Martinez-Salazar, J. M., Lloret, L., Moreno, S., Nunez, C. et al. (1996); Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii, Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure.. Journal of Bacteriology 178:(7)1793–1799 [View Article]
    [Google Scholar]
  11. Conti, E., Flaibani, A., Oregan, M., Sutherland, I. W. (1994) Alginate from Pseudomonas fluorescens and P. putida-production and properties.. Microbiology 140:1125–1132
    [Google Scholar]
  12. Costerton, J. W., Brown, M. R. W., Lam, J., Lam, K., Cochrane, D. M. G. (1990) The microcolony mode of growth in vivo an ecological perspective. Edited by Gacesa, P., Russell, N. J. Pseudomonas Infection and Alginates - Biochemistry, Genetics and Pathology vol. 140 London:: Chapman & Hall,;1125–1132
    [Google Scholar]
  13. Cote, G. L., Krull, L. H. (1988); Characterisation of the exocellular polysaccharides from Azotobacter chroococcum.. Carbohydr Res 181:143–152 [View Article]
    [Google Scholar]
  14. Coyne, M. J., Russell, K. S., Coyle, C. L., Goldberg, J. B. (1994); The Pseudomonas aeruginosa algC gene encodes phospho- glucomutase, required for the synthesis of a complete lipo- polysaccharide core. Journal of Bacteriology 1763500–3507
    [Google Scholar]
  15. Darzins, A., Nixon, L. L., Vanags, R. I., Chakrabarty, A. M. (1985); Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa.. Journal of Bacteriology 165:(1)249–257 [View Article]
    [Google Scholar]
  16. Davies, D. G., Geesey, G. G. (1995); Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture.. Appl Environ Microbiol 61:(3)860–867 [View Article]
    [Google Scholar]
  17. Davies, D. G., Chakrabarty, A. M., Geesey, G. G. (1993); Exopolysaccharide production in biofilms - substratum activation of alginate gene-expression by Pseudomonas aeruginosa. Appl Environ Microbiol 591181–1186
    [Google Scholar]
  18. Deretic, V., Konyecsni, W. M., Deretic, V., Gill, J. F., Chakrabarty, A. M. (1990); A procaryotic regulatory factor with a histone Hl-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa. ] Bacteriol 172,5544—5554, Gene algD encoding GDP-mannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa.. Journal of Bacteriology 169:(1)351–358 [View Article]
    [Google Scholar]
  19. Devault, J. D., Berry, A., Misra, T. K., Darzins, A., Chakrabarty, A. M. (1989); Environmental sensory signals and microbial pathogenesis: Pseudomonas aeruginosa infection in cystic fibrosis.. Biotechnology 7:352–357
    [Google Scholar]
  20. Devault, J. D., Kimbara, K., Chakrabarty, A. M. (1990); Pulmonary dehydration and infection in cystic-fibrosis - evidence that ethanol activates alginate gene-expression and induction of mucoidy in Pseudomonas aeruginosa. Molecular Microbiology 4737–745
    [Google Scholar]
  21. Devault, J. D., Hendrickson, W., Kato, J., Chakrabarty, A. M. (1991); Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli.. Molecular Microbiology 5:(5)737–745 [View Article]
    [Google Scholar]
  22. Eftekhar, F., Speert, D. P. (1988); Alginase treatment of mucoid Pseudomonas aeruginosa enhances phagocytosis by human monocyte-derived macrophages. lnfect lmmun 56:2788–2793
    [Google Scholar]
  23. Ertesvag, H., Doseth, B., Larsen, B., Skjak-Braek G., Valla S. (1994); Cloning and expression of an Azotobacter vinelandii mannuronan C5-epimerase gene. J Bacterio 176:2846–2853
    [Google Scholar]
  24. Ertesvag, H., Hoidal, H. K., Hals, I. K., Rian, A., Doseth, B., Valla, S. (1995); A family of modular type mannuronan C5-epimerase genes controls alginate structure in Azotobacter vinelandii.. Mol Microbiol 16:719–731
    [Google Scholar]
  25. Fett, W. F., Dunn, M. F. (1989); Exopolysaccharides produced by phytopathogenic Pseudomonas syringae pathovars in infected leaves of susceptible hosts.. Plant Physiology 89:(1)5–9 [View Article]
    [Google Scholar]
  26. Fett, W. F., Wijey, C. (1995); Yields of alginate produced by fluorescent pseudomonads in batch culture.. 1 Ind Microbiol 14:(5)412–415 [View Article]
    [Google Scholar]
  27. Fett, W. F., Osman, S. F., Fishman, M. L., Siebles, T. S. (1986); Alginate production by plant-pathogenic Pseudomonads. Appl Environ Microbiol 52466–473
    [Google Scholar]
  28. Fett, W. F., Osman, S. F., Dunn, M. F. (1989); Characterisation of exopolysaccharides produced by plant-associated Pseudomonads.. Appl Environ Microbiol 55:(3)579–583 [View Article]
    [Google Scholar]
  29. Fett, W. F., Wijey, C., Lifson, E. R. (1992); Occurrence of alginate gene-sequences among members of the Pseudomonad ribosomal- RNA homology groups I-IV. Fems Microbiology Letters 99:151–157
    [Google Scholar]
  30. Fialho, A. M., Zielinski N.A., Fett W. F., Chakrabarty A. M., Berry A. (1990); Distribution of alginate gene-sequences in the Pseudomonas ribosomal-RNA homology group I-Azomonas— Azotobacter lineage of superfamily-B procaryotes.. Appl Environ Microbio l56:436–443
    [Google Scholar]
  31. Franklin, M. J., Ohman, D. E. (1993); Identification of algF in the alginate biosynthetic gene-cluster of Pseudomonas aeruginosa which is required for alginate acetylation.. Journal of Bacteriology 175:(16)5057–5065 [View Article]
    [Google Scholar]
  32. Franklin, M. J., Ohman, D. E. (1996); Identification of algl and algj in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O-acetylation.. Journal of Bacteriology 178:(8)2186–2195 [View Article]
    [Google Scholar]
  33. Franklin, M. J., Chitnis, C. E., Gacesa, P., Sonesson, A., White, D. C. et al. (1994); Pseudomonas aeruginosa algG is a polymer level alginate C5-mannuronan epimerase.. Journal of Bacteriology 176:(7)1821–1830 [View Article]
    [Google Scholar]
  34. Gacesa, P., Goldberg, J. B., Geers, T., Baker, N. R. (1992); Heterologous expression of an alginate lyase gene in mucoid and non-mucoid strains of Pseudomonas aeruginosa, The effect of sub-lethal concentrations of aminoglycosides on adherence of Pseudomonas aeruginosa to hamster tracheal epithelium.. Journal of General Microbiology 138:(8)1665–1670 [View Article]
    [Google Scholar]
  35. Goldberg, J. B., Dahnke, T. (1992); Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators.. Molecular Microbiology 6:(1)59–66 [View Article]
    [Google Scholar]
  36. Goldberg, J. B., Hatano, K., Pier, G. B. (1993); Synthesis of lipopolysaccharide-O side-chains by Pseudomonas aeruginosa PAO1 requires the enzyme phosphomannomutase.. Journal of Bacteriology 175:(6)1605–1611 [View Article]
    [Google Scholar]
  37. Govan, J. R. W., Deretic, V. (1996); Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.. Microbiological Reviews 60:(3)539–574 [View Article]
    [Google Scholar]
  38. Govan, J. R. W., Fyfe, J. A. M., Jarman, T. R. (1981); Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina.. Journal of General Microbiology 125:217–220
    [Google Scholar]
  39. Govan, J. R. W., Sarasola, P., Taylor, D. J., Tatnell, P. J., Russell, N. J. et al. (1992); Isolation of a mucoid alginate-producing Pseudomonas aeruginosa strain from the equine guttural pouch.. Journal of Clinical Microbiology 30:(3)595–599 [View Article]
    [Google Scholar]
  40. Gross, M., Rudolph, K. (1987); Demonstration of levan and alginate in bean-plants (Phaseolus vulgaris) infected by Pseudo- monas-syringae pv phaseolicola.. J Phytopathol (Phytopathol Z) 120:(1)9–19 [View Article]
    [Google Scholar]
  41. Grosse S., Wingender J., Trttper H. G. (1995); Characterization of mucoid Pseudomonas aeruginosa strains isolated from technical water systems.. Journal of Applied Bacteriology 79:(1)94–102 [View Article]
    [Google Scholar]
  42. Hoyle, B. D., Williams, L. J., Costerton, J. W. (1993); Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms.. Infection and Immunity 61:(2)777–780 [View Article]
    [Google Scholar]
  43. Kato, J., Chakrabarty, A. M. (1991); Purification of the regulatory protein AlgRl and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa.. Proc Natl Acad Sci USA 88:(5)1760–1764 [View Article]
    [Google Scholar]
  44. Kato, J., Misra, T. K., Chakrabarty, A. M. (1990); AlgR3, a protein resembling eukaryotic histone Hl, regulates alginate synthesis in Pseudomonas aeruginosa.. Proc Natl Acad Sci USA 87:(8)2887–2891 [View Article]
    [Google Scholar]
  45. Kidambi, S. P., Sundin, G. W., Palmer, D. A., Chakrabarty, A. M., Bender, C. L. (1995); Copper as a signal for alginate synthesis in Pseudomonas syringae pv syringae.. Appl Environ Microbiol 61:(6)2172–2179 [View Article]
    [Google Scholar]
  46. Konig, B., Ceska, M., Konig, W. (1995); Effect of Pseudomonas aeruginosa on interleukin-8 release from human phagocytes.. Int Arch Allergy Immunol 106:(4)357–365 [View Article]
    [Google Scholar]
  47. Larsen, B., Haug, A. (1971a); Biosynthesis of alginate. Part I. Composition and structure of alginate produced by Azotobacter vinelandii.. Carbohydr Res 17:(2)287–296 [View Article]
    [Google Scholar]
  48. Larsen, B., Haug, A. (1971b); Biosynthesis of alginate. Part III. Tritium incorporation with polymannuronic acid 5-epimerase from Azotobacter vinelandii.. Carbohydr Res 20:(2)225–232 [View Article]
    [Google Scholar]
  49. Lee, J. W., Day, D. F. (1995); Bioacetylation of seaweed alginate.. Appl Environ Microbiol 61:(2)650–655 [View Article]
    [Google Scholar]
  50. LeitSo, J. H., S3-Correia, I., Leitao, J. H., S3-Correia, I. (1997a); Effects of growth-inhibitory concentrations of copper on alginate biosynthesis in highly mucoid Pseudomonas aeruginosa, Oxygen-dependent upregulation of transcription of alginate genes algA, algC and algD in Pseudomonas aeruginosa.. Microbiology 143:(2)481–488 [View Article]
    [Google Scholar]
  51. Linker, A., Jones, R. S. (1966); A new polysaccharide resembling alginic acid isolated from Pseudomonads.. Journal of Biological Chemistry 241:(16)3845–3851 [View Article]
    [Google Scholar]
  52. Lloret, L., Barreto, R., Leon, R., Moreno, S., Martinez-Salazar, J. M. et al. (1996); Genetic analysis of the transcriptional arrangement of Azotobacter vinelandii alginate biosynthetic genes: identification of two independent promoters.. Molecular Microbiology 21:(3)449–457 [View Article]
    [Google Scholar]
  53. Lynn, A. R., Sokatch, J. R. (1984); Incorporation of isotope from specifically labelled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinelandii.. Journal of Bacteriology 158:(3)1161–1162 [View Article]
    [Google Scholar]
  54. Ma, J. F., Phibbs, P. V., Hassett, D. J. (1997); Glucose stimulates alginate production and algD transcription in Pseudomonas aeruginosa.. Fems Microbiology Letters 148:(2)217–221 [View Article]
    [Google Scholar]
  55. McAvoy, M. J., Newton, V., Pauli, A., Morgan, J., Gacesa, P. et al. (1989); Isolation of mucoid strains of Pseudomonas aeruginosa from non-cystic-fibrosis patients and characterization of the structure of their secreted alginate.. Journal of Medical Microbiology 28:(3)183–189 [View Article]
    [Google Scholar]
  56. Maharaj, R., May, T. B., Wang, S.-K., Chakrabarty, A. M. (1993); Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa. Gene 136267–269
    [Google Scholar]
  57. Mai, G. T.„ McCormack, J., G., Seow, W. K., Pier, G. B., Jackson, L. A. et al. (1993a; Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase, specific monoclonal-antibodies, and antibiotics,. Infection and Immunity 614338–4343
    [Google Scholar]
  58. Mai, G. T., Seow, W. K., Pier, G. B., McCormack, J. G., Thong, Y. H. (1993b); Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) - reversal by physicochemical, alginase, and specific monoclonal-antibody treatments.. Infection and Immunity 61:(2)559–564 [View Article]
    [Google Scholar]
  59. Marcus, H., Baker, N. R. (1985); Quantitation of adherence of mucoid and non-mucoid Pseudomonas aeruginosa to hamster tracheal epithelium.. Infection and Immunity 47:(3)723–729 [View Article]
    [Google Scholar]
  60. Martin, D. W., Schurr, M. J., Mudd, M. H., Deretic, V. (1993a); Differentiation of Pseudomonas aeruginosa into the alginate- producing form - inactivation of mucB causes conversion to mucoidy. Molecular Microbiology 9497–506
    [Google Scholar]
  61. Martin, D. W., Schurr, M. J., Mudd, M. H., Govan, J. R. W., Deretic, V. (1993b); Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients.. Proc Natl Acad Sci USA 90:(18)8377–8381 [View Article]
    [Google Scholar]
  62. Martin, D. W., Schurr, M. J., Yu, H., Deretic, V. (1994); Analysis of promoters controlled by the putative sigma-factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa - relationship to sigma(e) and stress-response.. Journal of Bacteriology 176:(21)6688–6696 [View Article]
    [Google Scholar]
  63. Martinez-Salazar, J. M., Moreno, S., Najera, R., Boucher, J. C., Espin, G. et al. (1996); Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis.. Journal of Bacteriology 178:(7)1800–1808 [View Article]
    [Google Scholar]
  64. May, T. B., Chakrabarty, A. M. (1994); Pseudomonas aeruginosa: genes and enzymes of alginate biosynthesis.. Trends in Microbiology 2:(5)151–156 [View Article]
    [Google Scholar]
  65. Mejia Ruiz, H., Guzman, J., Moreno, S., Soberon-Chavez, G., Espin, G. (1997); The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an tf/gD-independent promoter.. Gene 199:(1–2)271–277 [View Article]
    [Google Scholar]
  66. Mohr, C. D., Rust, L., Albus, A. M., Iglewski, B. H., Deretic, V. (1990); Expression patterns of genes encoding elastase and controlling mucoidy - co-ordinate regulation of 2 virulence factors in Pseudomonas aeruginosa isolates from cystic fibrosis.. Molecular Microbiology 4:(12)2103–2110 [View Article]
    [Google Scholar]
  67. Monday, S. R., Schiller, N. L. (1996); Alginate synthesis in Pseudomonas aeruginosa-, the role of AlgL (alginate lyase) and AlgX.. Journal of Bacteriology 178:(3)625–632 [View Article]
    [Google Scholar]
  68. Narbad, A., Russell, N. J., Gacesa, P. (1988); Radiolabelling patterns in alginate of Pseudomonas aeruginosa synthesized from specifically-labelled 14C monosaccharide precursors.. Microbios 54:171–179
    [Google Scholar]
  69. Osman, S. F., Fett, W. F., Fishman, M. L. (1986); Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea.. Journal of Bacteriology 166:(1)66–71 [View Article]
    [Google Scholar]
  70. Page, W. J., Sadoff, H. L. (1975); Relationship between calcium and uronic acids in the encystment of Azotobacter vinelandii.. Journal of Bacteriology 122:(1)145–151 [View Article]
    [Google Scholar]
  71. Penaloza Vazquez, A., Kidambi, S. P., Chakrabarty, A. M., Bender, C. L. (1997); Characterisation of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae.. Journal of Bacteriology 179:(14)4464–4472 [View Article]
    [Google Scholar]
  72. Pindar, D. F., Bucke, C. (1975); The biosynthesis of alginic acid by Azotobacter vinelandii.. Biochemical Journal 152:(3)617–622 [View Article]
    [Google Scholar]
  73. Ramphal, R., Carnoy, C., Fievre, S., Michalski, J. C., Houdret, N. et al. (1991); Pseudomonas aeruginosa recognises carbohydrate chains containing type 1 (Gal-/?-l-3GlcNAc) or type 2 (Gal-/?-l-4GlcNAc) disaccharide units.. Infection and Immunity 59:(2)700–704 [View Article]
    [Google Scholar]
  74. Rehm, B. H. A. (1996); The Azotobacter vinelandii gene algj encodes an outer-membrane protein presumably involved in the export of alginate.. Microbiology 142:(4)873–880 [View Article]
    [Google Scholar]
  75. Rehm, B. H. A., Boheim, G., Tommassen, J., Winkler, U. K. (1994); Overexpression of AlgE in Escherichia coli - subcellular localization, purification, and ion channel properties.. Journal of Bacteriology 176:(18)5639–5647 [View Article]
    [Google Scholar]
  76. Rehm, B. H. A., Ertesvag, H., Valla, S. (1996); New Azotobacter vinelandii mannuronan C5-epimerase gene {algG) is part of an alg gene-cluster physically organized in a manner similar to that in Pseudomonas aeruginosa.. Journal of Bacteriology 178:(20)5884–5889 [View Article]
    [Google Scholar]
  77. Rice, J. F., Fowler, R. F., White, D. C., Sayler, G. S. (1995); Effects of external stimuli on environmental bacterial strains harbouring an algD-lux bioluminescent reporter plasmid for the study of corrosive biofilms.. Journal of Industrial Microbiology 15:(4)318–328 [View Article]
    [Google Scholar]
  78. Roychoudhury, S., Sakai, K., Chakrabarty, A. M. (1992); AlgR2 is an ATP/GTP-dependent protein-kinase involved in alginate synthesis by Pseudomonas aeruginosa.. Proc Natl Acad Sci USA 89:(7)2659–2663 [View Article]
    [Google Scholar]
  79. Schiller, N. L., Monday, S. R.„ Boyd, C., M., Keen, N. T., Ohman, D. E. (1993); Characterization of the Pseudomonas aeruginosa alginate lyase gene {algL) - cloning, sequencing, and expression in Escherichia coli.. Journal of Bacteriology 175:(15)4780–4789 [View Article]
    [Google Scholar]
  80. Schlictman, D., Kavanaughblack, A., Shankar, S., Chakrabarty, A. M. (1994); Energy metabolism and alginate biosynthesis in Pseudomonas aeruginosa - role of the tricarboxylic acid cycle.. Journal of Bacteriology 176:(19)6023–6029 [View Article]
    [Google Scholar]
  81. Schlictman, D., Kubo, M., Shankar, S., Chakrabarty, A. M. (1995); Regulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: roles of algR2 and algH.. J Bacteriol Yll 177:(9)2469–2474 [View Article]
    [Google Scholar]
  82. Schurr, M. J., Martin, D. W., Mudd, M. H., Hibler, N. S., Boucher, J. C. et al. (1993); The algD promoter - regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis.. Cellular & Molecular Biology Research 39:371–376
    [Google Scholar]
  83. Schurr, M. J., Yu, H., Martinez-Salazar, J. M., Hibler, N. S., Deretic, V. (1995); Biochemical characterisation and posttranslational modification of AlgU, a regulator of stress response in Pseudomonas aeruginosa.. Biochem Biophys Res Commun 216:(3)874–880 [View Article]
    [Google Scholar]
  84. Schurr, M. J., Yu, H., Martinez-Salazar, J. M., Boucher, J. C., Deretic, V. (1996); Control of algU, a member of the sigma(e)-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic-fibrosis.. Journal of Bacteriology 178:(16)4997–5004 [View Article]
    [Google Scholar]
  85. Schweizer, H. P., Po, C., Bacic, M. K. (1995); Identification of Pseudomonas aeruginosa glpM, whose gene-product is required for efficient alginate biosynthesis from various carbon sources.. Journal of Bacteriology 177:(16)4801–4804 [View Article]
    [Google Scholar]
  86. Sherbrock-Cox, V., Russell, N. J., Gacesa, P. (1984); The. purification and chemical characterization of the alginate present in extracellular material produced by mucoid strains of Pseudomonas aeruginosa. Carbohydr Res 135:147–154
    [Google Scholar]
  87. Shinabarger D., May T. B., Boyd A., Ghosh M., Chakrabarty A. M. (1993); Nucleotide-sequence and expression of the Pseudomonas aeruginosa algF gene controlling acetylation of alginate; (1993) Molecular Microbiology 9:1027–1035
    [Google Scholar]
  88. Singh, S., Koehler, B., Fett, W. F. (1992); Effect of osmolarity and dehydration on alginate production by fluorescent Pseudomonads.. Current Microbiology 25:(6)335–339 [View Article]
    [Google Scholar]
  89. Tatnell, P. J., Russell, N. J., Gacesa, P. (1993); A metabolic study of the activity of GDP-mannose dehydrogenase and concentrations of activated intermediates of alginate biosynthesis in Pseudomonas aeruginosa.. Journal of General Microbiology 139:(1)119–127 [View Article]
    [Google Scholar]
  90. Tatnell, P. J., Russell, N. J., Gacesa, P. (1994); GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies.. Microbiology 140:(7)1745–1754 [View Article]
    [Google Scholar]
  91. Terry, J. M., Pina, S. E., Mattingly, S. J. (1992); Role of energy- metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype.. Infection and Immunity 60:(4)1329–1335 [View Article]
    [Google Scholar]
  92. Wozniak, D. J., Ohman, D. E., Wozniak, D. J., Ohman, D. E. (1991); Pseudomonas aeruginosa AlgB, a 2-component response regulator of the NtrC family, is required for algD transcription, Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT.. Journal of Bacteriology 173:(4)1406–1413 [View Article]
    [Google Scholar]
  93. Yu, H., Schurr, M. J., Deretic, V. (1995); Functional equivalence of Escherichia coli sigma (e) and Pseudomonas aeruginosa AlgU - Escherichia coli RpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in AlgU mutants of Pseudomonas aeruginosa.. J Bacteriol Yll, 3259—3268.
  94. Yu, H., Mudd, M., Boucher, J. C., Schurr, M. J., Deretic, V. (1997); Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. Journal of Bacteriology 179187–193
    [Google Scholar]
  95. Zielinski, N. A., Maharaj, R., Roychoudhury, S., Danganan, C. E., Hendrickson, W. et al. (1992); Alginate synthesis in Pseudomonas aeruginosa - environmental regulation of the algC promoter.. Journal of Bacteriology 174:(23)7680–7688 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1133
Loading
/content/journal/micro/10.1099/00221287-144-5-1133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error