1887

Abstract

was examined for fructose and mannose transport systems. was shown to possess a phosphoenolpyruvate (PEP): fructose phosphotransferase system (fructose-PTS) and a mannose-specific PTS, both induced by fructose and mannose. The mannose-PTS of exhibited cross-reactivity with mannose-PTS proteins. The fructose-PTS proteins exhibited cross-reactivities with and fructose-PTS proteins. In grown on mannose as well as on fructose, the phosphorylated derivative accumulated from fructose was fructose 1-phosphate. Identification of fructose 1-phosphate was confirmed by C-NMR spectroscopy. 1-Phosphofructokinase (1-PFK), which converts the product of the PTS reaction to fructose 1,6-diphosphate, was present in grown with fructose but not on mannose. An inducible phosphofructomutase (PFM) activity, an unusual enzyme converting fructose 1-phosphate to fructose 6-phosphate, was detected in extracts induced by mannose or fructose. These results suggest that in cells grown on fructose, fructose 1-phosphate could be converted to fructose 1,6-diphosphate either directly by the 1-PFK activity or via fructose 6-phosphate by the PFM and 6-phosphofructokinase activities. In cells grown on mannose, the degradation of fructose 1-phosphate via PFM and the Embden-Meyerhof pathway appeared to be a unique route.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-4-1113
1998-04-01
2021-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/4/mic-144-4-1113.html?itemId=/content/journal/micro/10.1099/00221287-144-4-1113&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann L. (1975); Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii.. I. Physiological studies and mutant analysis. Arch Microbiol 105:225–240
    [Google Scholar]
  2. Bouma C. L., Roseman S. (1996a).; Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the glucose and N-acetylglucosamine permeases.. Journal of Biological Chemistry 271:33457–33467
    [Google Scholar]
  3. Bouma C. L., Roseman S. (1996b).; Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the mannose/glucose permease.. Journal of Biological Chemistry 271:33468–33475
    [Google Scholar]
  4. Bourassa S., Vadeboncoeur C. (1992); Expression of an inducible Enzyme II fructose and activation of a cryptic Enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIMan, a component of the phosphoenolpyruvate: mannose phosphotransferase system.. ] Gen Microbiol 138:769–777
    [Google Scholar]
  5. Bouvet O. M. M., Grimont P. A. D. (1987); Diversity of the phosphoenolpyruvate: glucose phosphotransferase system in the Enterobacteriaceae.. Ann Inst Pasteur Microbiol 138:3–13
    [Google Scholar]
  6. Bouvet O. M. M., Lenormand P., Carlier J. P., Grimont P. A. D. (1994); Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species.. Research in Microbiology 145:129–139
    [Google Scholar]
  7. Bradford M. M. (1976); A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Analytical Biochemistry 72:248–254
    [Google Scholar]
  8. Chassy B. M., Thompson J. (1983); Regulation of phosphoenolpyruvate-dependent phosphotransferase system and /Ld- phosphogalactoside galactohydrolase activities in Lactobacillus casei.. Journal of Bacteriology 154:1195–1203
    [Google Scholar]
  9. Colwell R. R., MacDonell M. T., DeLey J. (1986); Proposal to recognize the family Aeromonadaceae fam. nov.. International Journal of Systematic Bacteriology 36:473–477
    [Google Scholar]
  10. Conrad R., Schlegel H. G. (1977); Different degradation pathways for glucose and fructose in Rhodopseudomonas cap- sulata.. Archives of Microbiology 112:39–48
    [Google Scholar]
  11. Crasnier M., Danchin A. (1990); Characterization of Escherichia coli adenylate cyclase mutants with modified regulation.. Journal of General Microbiology 136:1825–1831
    [Google Scholar]
  12. Curtis S. J., Epstein W. (1975); Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase and glucokinase.. Journal of Bacteriology 122:1189–1199
    [Google Scholar]
  13. De Crecy-Lagard V., Bouvet O. M. M., Lejeune P., Danchin A. (1991a); Fructose catabolism in Xanthomonas campestris pv. campestris.. Journal of Biological Chemistry 266:18154–18161
    [Google Scholar]
  14. De Cr£cy-Lagard V., Bouvet O. M. M., Lejeune P., Danchin A. (1991b); Identification of two fructose transport and phosphorylation pathways in Xanthomonas campestris pv. campestris.. Molecular & General Genetics 227:465–472
    [Google Scholar]
  15. De Cr€cy-Lagard V., Binet M., Danchin A. (1995); Fructose phosphotransferase system of Xanthomonas campestris pv. campestris: characterization of the fruB gene.. Microbiology 141:2253–2260
    [Google Scholar]
  16. Durham D. R. St Phibbs, P.V. J. (1982); Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phos- photransferase system from Pseudomonas aeruginosa.. Journal of Bacteriology 149:534–541
    [Google Scholar]
  17. Erni B., Zanolari B. (1985); The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme nMan/IIIMan complex of Escherichia coli.. Journal of Biological Chemistry 260:15495–15503
    [Google Scholar]
  18. Farmer J. J. III (1992) The family Vibrionaceae.. Edited by Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. The Prokaryotes.. , 2nd edn. edition, New York:: Springer;2938–2951
    [Google Scholar]
  19. Farmer J. J., Ill Arduino, M. J., Hickman-Brenner F. W. (1992) The genera Aeromonas and Plesiomonas.. Edited by Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. The Prokaryotes.. , 2nd edn. edition, New York: Springer;3013–3045
    [Google Scholar]
  20. Ferenci T., Kornberg H. L. (1973); The utilization of fructose by Escherichia coli.. Biochemical Journal 132:341–347
    [Google Scholar]
  21. Ferenci T., Kornberg H. L. (1974); Role of PTS mediated synthesis of fructose-l-P and fructose-6-P in the growth of Escherichia coli on fructose.. Proc R Soc Lond Ser B 187:105–119
    [Google Scholar]
  22. Feucht B. U., Saier M. H. Jr (1980); Fine control of adenylate cyclase by the phosphoenolpyruvate sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium.. Journal of Bacteriology 141:603–610
    [Google Scholar]
  23. Geerse R. H., Izzo F., Postma P. W. (1989); The PEP: fructose phosphotransferase system in Salmonella typhimurium: FPr combines Enzyme IIIfru and pseudo-HPr activities.. Molecular & General Genetics 216:517–525
    [Google Scholar]
  24. Hanson T. E., Anderson R. L. (1968); Phosphoenolpyruvate- dependent formation of D-fructose-l-phosphate by a four- component phosphotransferase system.. Proc Natl Acad Sci USA 61:269–276
    [Google Scholar]
  25. Jeanes A., Pittsley J. E., Senti F. R. (1961; Polysaccharide B a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation. Journal of Applied Polymer Science 5:519–526
    [Google Scholar]
  26. Jones-Mortimer M. C., Kornberg H. L. (1974); Genetic analysis of fructose utilization by Escherichia coli.. Proc R Soc Lond Ser B 187:121–131
    [Google Scholar]
  27. Kubota Y., luchi S., Fujisawa A., Tanaka S. (1979); Separation of four components of the phosphoenolpyruvate: glucose phosphotransferase system in Vibrio parahaemolyticus.. Microbiology and Immunology 23:131–146
    [Google Scholar]
  28. Leblanc D. J., Crow V. L., Lee L. N., Garon C. F. (1979); Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.. Journal of Bacteriology 137:878–884
    [Google Scholar]
  29. Lessie T. G., Neidhart F. C. (1967); Adenosine triphosphate- linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase.. Journal of Bacteriology 93:1337–1345
    [Google Scholar]
  30. Levy S., Zeng G. Q., Danchin A. (1990); Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon.. Gene 86:27–33
    [Google Scholar]
  31. Maniatis T., Fritsch E. F., Sambrook J. (1982); Molecular Cloning: a Laboratory Manual.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Mattoo R. L., Waygood E. B. (1983); An enzymatic method for [32P]phosphoenolpyruvate synthesis.. Analytical Biochemistry 128:245–249
    [Google Scholar]
  33. Meadow N. D., Revuelta R., Chen V. N., Colwell R. R., Roseman S. (1987); Phosphoenolpyruvate: glucose phosphotransferase system in species of Vibrio, a widely distributed marine bacterial genus.. Journal of Bacteriology 169:4893–4900
    [Google Scholar]
  34. Miller J. H. (1972); Experiments in Molecular Genetics.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Postma P. W., Lengeler J. W. (1985); Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria.. Microbiological Reviews 49:232–269
    [Google Scholar]
  36. Postma P. W., Stock J. B. (1980); Enzymes II of the phosphotransferase system do not catalyse sugar transport in the absence of phosphorylation.. Journal of Bacteriology 141:476–484
    [Google Scholar]
  37. Postma P. W., Lengeler J. W., Jacobson G. R. (1993); Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria.. Microbiological Reviews 57:543–594
    [Google Scholar]
  38. Rephaeli A. W., Saier M. H. Jr (1980); Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the mannose enzyme II of the phosphotransferase system in Salmonella typhimurium.. Journal of Biological Chemistry 255:8585–8591
    [Google Scholar]
  39. Saier M. H. Jr, Feucht B. U., Roseman S. (1971); Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria.. Journal of Biological Chemistry 246:7819–7821
    [Google Scholar]
  40. Saier M. H. Jr, Simoni R. D., Roseman S. (1976); Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.. Journal of Biological Chemistry 251:6584–6597
    [Google Scholar]
  41. Scholte B. J., Postma P. W. (1981); Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium.. European Journal of Biochemistry 114:51–58
    [Google Scholar]
  42. Stolz B., Huber M., Markovic-Housley Z., Erni B. (1993); The mannose transporter of Escherichia coli.. Structure and function of the IIABMan subunit. J Biol Chem 268:27094–27099
    [Google Scholar]
  43. Tanaka S., Lerner S. A., Lin E. (1967); Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol.. Journal of Bacteriology 93:642–648
    [Google Scholar]
  44. Thornley J. P., Shaw J. G., Gryllos I.A., Eley A. (1997); Virulence properties of clinically significant Aeromonas species: evidence for pathogenicity.. Reviews in Medical Microbiology 8:61–72
    [Google Scholar]
  45. Trotot P., Sismeiro O., Vivarfes C., Glaser P., Bresson-Roy A. (1996); Comparative analysis of the cya locus in enterobacteria and related Gram-negative facultative anaerobes.. Biochimie 78:277–287
    [Google Scholar]
  46. Wawszkiewicz E. J. (1961); A two dimensional system of paper chromatography of some sugar phosphates.. Analytical Chemistry 33:252–254
    [Google Scholar]
  47. Waygood E. B., Mattoo R. L., Peri K. G. (1984); Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for jjmannose, jjjfruetose, jjjglucltol, anJ the phosphorylation of Enzyme nmannit01 and Enzyme II V-acetyWucosamine.. j Qeu ^jocpem 25:139–159
    [Google Scholar]
  48. Williams N. D., Fox K., Shea C., Roseman S. (1986); Pel, the protein that permits z DNA penetration of E. coli, is encoded by a gene in pts M and is required for mannose utilization by the phosphotransferase system.. Proc Natl Acad Sci USA 83:89348938
    [Google Scholar]
  49. Woese C. R. (1987); Bacterial evolution.. Microbiological Reviews 51:221–271
    [Google Scholar]
  50. Wu L. F., Tomich J. M., Saier M. H. Jr (1990); Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB (HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms.. Journal of Molecular Biology 213:687–703
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-4-1113
Loading
/content/journal/micro/10.1099/00221287-144-4-1113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error