1887

Abstract

Previous studies have shown that several bacterial species exhibit a multigenic response following temperature downshift (cold shock). Evidence for such a response in is reported, based on the isolation of a range of low-induction-temperature gene fusions containing Mu insertions. The fusions exhibited different levels of basal light at 30 °C, and were induced at different rates and to different degrees over several hours following a reduction in temperature to 10 °C. Of the Mu gene fusions isolated, one was found which produced essentially no light when grown at 30 °C but exhibited rapid and high-level induction when the temperature was reduced to 10 °C. The target of this gene fusion (which was named ) was shown to lie adjacent to the operon and to encode a homologue of the major cold-shock protein of , CspA. Luminescence studies revealed that substantial light production occurred from the ::Mu fusion at or below 22 °C but not at higher temperatures, even following a temperature drop from 30 °C. Moreover, mRNA levels were found to mimic this pattern of luminescence, suggesting that expression occurs below a defined temperature threshold. The mRNA was also found to be very stable at 10 °C but to become highly unstable when the temperature was raised towards the threshold temperature, even in the presence of rifampicin. Existing cellular RNases therefore appear to mediate the decay of mRNA at high temperatures, but are incapable of this at low temperatures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-3-697
1998-03-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/3/mic-144-3-697.html?itemId=/content/journal/micro/10.1099/00221287-144-3-697&mimeType=html&fmt=ahah

References

  1. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K.(editors). 1992 Current Protocols in Molecular Biology. New York;: John Wiley.;
    [Google Scholar]
  2. Avgay T., Aharonowitz Y., Cohen G. 1992; Streptomycescontains a 7.0 kDa cold shock protein. Nucleic Acids Res 20:5478.
    [Google Scholar]
  3. Benson N.R., Goldman B.S. 1992; Rapid mapping inSalmonella typhimurium with Mud-P22 prophages. J Bacteriol 174:1673–1681
    [Google Scholar]
  4. Brandi A., Pietroni P., Guaierzi C.O., Pon C.L. 1996; Post-transcriptional regulation of CspA expression inEscherichia coli. . Mol Microbiol 19:231–240
    [Google Scholar]
  5. Etchegaray J.P., Jones P.G., Inouye M. 1996; Differential thermoregulation of two highly homologous cold-shock genes, cspA andcspB, ofEscherichia coli. . Genes Cells 1:171–178
    [Google Scholar]
  6. Fang L, Jiang W., Bae W., Inouye M. 1997; Promoter- independent cold-shock induction ofcspA and its derepression at 37 #x00B0;C by mRNA stabilisation. Mol Microbiol 23:355–364
    [Google Scholar]
  7. Feinberg A.P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13
    [Google Scholar]
  8. Feinberg A.P., Vogelstein B. 1984; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity - addendum. Anal Biochem 137:266–267
    [Google Scholar]
  9. Francis K.P., Gallaghe M.P. 1993; Light emission from aMudlux transcriptional fusion inSalmonella typhimurium is stimulated by hydrogen peroxide and by interaction with the mouse macrophage cell line J774.2. Infect Immun 61:640–649
    [Google Scholar]
  10. Goldenberg D., Azar I., Oppenheim A.B. 1996; Differential mRNA stability of thecspA gene in the cold shock response ofEscherichia coli. . Mol Microbiol 19:241–248
    [Google Scholar]
  11. Goldstein J., Pollitt N.S., Inouye M. 1990; Major cold shock protein ofEscherichia coli. . Proc Natl Acad Sci USA 87:283–287
    [Google Scholar]
  12. Hosieth S.K., Stocker B.A.D. 1981; Aromatic-dependentSalmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239
    [Google Scholar]
  13. Jones P.G., Inouye M. 1994; The cold shock response - a hot topic. Mol Microbiol 11:811–818
    [Google Scholar]
  14. Jones P.G., Inouye M. 1996; RbfA, a 30S ribosomal-binding factor, is a cold-shock protein whose absence triggers the cold- shock response. Mol Microbiol 21:1207–1218
    [Google Scholar]
  15. Jones P.G., Van Bogelen R.A., Neidhardt F.C. 1987; Induction of proteins in response to low temperature inEscherichia coli. . J Bacteriol 169:2092–2095
    [Google Scholar]
  16. Jones P.G., Krah R., Tafuri S.R., Wolffe A.P. 1992; DNA gyrase, CS7.4, and the cold shock response inEscherichia coli. . J Bacteriol 174:5798–5802
    [Google Scholar]
  17. Jones P.G., Mitta M., Kim Y., Jiang W., Inouye M. 1996; Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA inEscherichia coli. . Proc Natl Acad Sci USA 9376–80
    [Google Scholar]
  18. Kahmann R., Kamp D. 1979; Nucleotide sequence of the attachment sites of the bacteriophage Mu DNA. Nature 280:247–250
    [Google Scholar]
  19. Kumar A., Malloch R.A., Fujlta N., Smillie D.A., Ishihama A., Hayward R.S. 1993; The minus 35-region ofEscherichia colisigma 70 is inessential for initiation of transcription at an 'extended minus 10' promoter. J Mol Biol 232:406–418
    [Google Scholar]
  20. La Teanna A., Brandi A., Falconi M., Spurio R., Pon C.C., Gualerzi C.O. 1991; Identification of a cold shock transcriptional enhancer of theEscherichia gene encoding nucleoid protein H-NS. Proc Natl Acad Sci USA 8810907–10911
    [Google Scholar]
  21. Lee S.J., Xie A., Jiang W., Etchegaray J.-P., Jones P.G., Inouye M. 1994; Family of the major cold-shock protein, CspA (CS7.4), ofEscherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11:833–839
    [Google Scholar]
  22. Lelivelt M.J., Kawula T.H. 1995; Hsc66, an hsp70 homolog inEscherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177:4900–4907
    [Google Scholar]
  23. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  24. Mayo B., Derzelle S., Fernandez M., Leonard C., Ferain T., Hols P., Suarez J.E, Delcour J. 1997; Cloning and characterisation ofcspL andcspP, two cold-inducible genes fromLactobacillus plantarum. . J Bacteriol 179:3039–3042
    [Google Scholar]
  25. Nakashima K., Kanamaru K., Mizuno T., Horikoshi K. 1996; A novel member of thecspA family of genes that is induced by cold shock inEscherichia coli. . J Bacteriol 178:2994–2997
    [Google Scholar]
  26. Neidhardt F.C, Ingraham J.L, Mizuno T., Schaechter M. 1990 Physiology of the Bacterial Cell. Sunderland, MA:: Sinauer Associates.;
    [Google Scholar]
  27. Qoronfleh M.W., Debrouck C., Keller J. 1992; Identification and characterization of low-temperature-inducible promoters ofEscherichia coli. . J Bacteriol 174:7902–7909
    [Google Scholar]
  28. Ross W.K., Goslnk K., Salomon J., Igarashi K., Zou C, Ishihama A., Severinov K., Gourse R.L. 1993; A third recognition element in bacterial promoters; DNA binding by the a subunit of RNA polymerase. Science 262:1407–1413
    [Google Scholar]
  29. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual,, 2nd. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  30. Sarmientos P., Sylvester J.E., Contente S., Cashe M. 1983; Differential stringent control of the tandemEscherichia coli ribo- somal RNA promoters from therrnA operon expressedin vivo in multicopy plasmids. Cell 32:1337–1346
    [Google Scholar]
  31. Scharf S.J., Horn G.T., Erlich H.A. 1986; Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233:1076–1078
    [Google Scholar]
  32. Short J.M., Fernandez J.M., Sorge J.A., Huse W.D. 1988; #x03BB; ZAP: a bacteriophage #x03BB; expression vector within-vivo excision properties. Nucleic Acids Res 16:7583–7600
    [Google Scholar]
  33. Smith C.M., Koch W.H., Franklin S.B., Foster P.L., Cebula T.A., Eisenstadt E. 1990; Sequence analysis and mapping of theSalmonella typhimurium LT2 umuDC operon. J Bacteriol 172:4964–4978
    [Google Scholar]
  34. Tanabe H., Goldstein J., Yang M.Z., Inouye M. 1992; Identification of the promoter region of theEscherichia coli major cold-shock gene, cspA. . J Bacteriol 174:3867–3873
    [Google Scholar]
  35. Whyte LG., Inniss W.E. 1992; Cold shock proteins and cold acclimation proteins in a psychrotrophic bacterium. Can J Microbiol 38:1281–1285
    [Google Scholar]
  36. Willimsky G., Bang H., Fischer G., Marahiel M.A. 1992; Characterization ofcspB, aBacillus > inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174:6326–6335
    [Google Scholar]
  37. Wolffe A.P. 1994; Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 16:245–251
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-3-697
Loading
/content/journal/micro/10.1099/00221287-144-3-697
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error