flocculence and growth at high temperature is dependent on the presence of the protein p37 Free

Abstract

A mutant deficient in p37, a glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like protein, was obtained and characterized with respect to flocculation behaviour, resistance to temperatures above the optimum for growth, morphology, growth, calcofluor white sensitivity and GAPDH activity. In YPD media, the mutant cells were unable to flocculate and were thermosensitive. However, this thermosensitivity could be overcome by the presence of calcium. Calcofluor white was toxic to the mutant, indicating that the mutation affects cell wall structure. The contribution of p37 to total GAPDH activity was 25% when cells were using glucose as carbon source and 50% when cells were growing in 3% ethanol. These results indicate that p37 is likely to be involved in thermotolerance and flocculation, which can be related to its contribution to cell wall integrity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-3-681
1998-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/3/mic-144-3-681.html?itemId=/content/journal/micro/10.1099/00221287-144-3-681&mimeType=html&fmt=ahah

References

  1. Allen R.W., Trach K.A., Hoch J.A. 1987; Identification of the 37 kDa protein displaying a variable interaction with the ery-throid cell membrane as GAPDH.. J Biol Chem 262:649–653
    [Google Scholar]
  2. Alloush H.M., López-Ribot J.L., Masten B.J., Chaffin W.L. 1997; 3-Phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candica albicans.. Microbiology 143:321–330
    [Google Scholar]
  3. Ausubel F., Brent R., Kingston R., Moore D., Seidman J.G., Smith J., Struhl K. 1987 Current Protocols in Molecular Biology. New York:: Wiley Interscience.;
    [Google Scholar]
  4. Binder M., Schanz M., Hartig A. 1991; Vector-mediated overexpression of catalase A in the yeast Saccharomyces cerevisiaeinduces inclusion body formation.. Eur J Cell Biol 54:305–312
    [Google Scholar]
  5. Binder M., Hartig A., Sata T. 1996; Immunogold labelling of yeast cells: an efficient tool for the study of protein targeting and morphological alteration due to overexpression and inactivation of genes.. Histochem Cell Biol 106:115–130
    [Google Scholar]
  6. Bossier P., Goethals P., Rodrigues-Pousada C. 1997; Constitutive flocculation in Saccharomyces cerevisiae through overexpression of the GTS1 gene, coding for a ?Glo?-type Zn-finger-containing protein.. Yeast 13:717–725
    [Google Scholar]
  7. Fernandes P.A., Keen J.N., Findlay J.B.C., Moradas-Ferreira P. 1992; A protein homologous to glyceraldehyde-3-phosphate dehydrogenase is induced in the cell wall of a flocculent Kluyveromyces marxianus.. Biochim Biophys Acta 1159:67–73
    [Google Scholar]
  8. Fernandes P.A., Sousa M., Moradas-Ferreira P. 1993; Flocculation of Kluyveromyces marxianus is induced by a temperature upshift.. Yeast 9:859–866
    [Google Scholar]
  9. Fernandes P.A., Sena Esteves M., Moradas-Ferreira P. 1995; Characterization of the glyceraldehyde-phosphate dehydrogenase gene family from Kluyveromyces marxianus -Polymerase Chain Reaction-single-strand conformation polymorphism as a tool for the study of multigenic families.. Yeast 11:725–733
    [Google Scholar]
  10. Gil-Navarro I., Gil M.L., Casanova M., O?Connor J.E., Martinez J.P., Gozalbo D. 1997; The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen.. J Bacteriol 179:4992–4999
    [Google Scholar]
  11. Holland M.J., Westhead E.W. 1973; Chemical reactivity at the catalytic sites of aspartic-semialdehyde dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase.. Biochemistry 12:2276–2281
    [Google Scholar]
  12. Holmberg S. 1978; Isolation and characterization of a polypeptide absent from non-flocculent mutants of Saccharomyces cerevisiae.. Carlsberg Res Commun 43:401–413
    [Google Scholar]
  13. Huitorel P., Pantolini D. 1985; Bundling of microtubules by glyceraldehyde-3-phosphate dehydrogenase and its modulation by ATP.. Eur J Biochem 150:265–269
    [Google Scholar]
  14. Kawamoto R.M., Caswell A.H. 1986; Autophosphorylation of glyceraldehyde-3-phosphate dehydrogenase and phosphorylation of protein from skeletal muscle microsomes.. Bio-chemistry 25:656–661
    [Google Scholar]
  15. Meyer-Siegler K., Mauro D.J., Seel G., Weirzer J., Deriel J.K., Sirover M.A. 1991; A human nuclear uracil DNA glycosylase is the 37 kDa subunit of glyceraldehyde-3-phosphate dehydrogen-ase.. Proc Natl Acad Sci USA 888460–8464
    [Google Scholar]
  16. Miki B.L.A., Poon N.H., James A.P., Seligy V.L. 1982; Possible mechanism for flocculation interactions governed by gene FLOI in Saccharomyces cerevisiae.. J Bacteriol 150:878–889
    [Google Scholar]
  17. Moradas-Ferreira P., Fernandes P.A., Costa M.J. 1994; Yeast flocculation - the role of cell wall proteins.. Colloids Surf B Biointerf 2159–164
    [Google Scholar]
  18. Nishihara H., Toraya T., Fukui S. 1976; Induction of floc-forming ability in brewer?s yeast.. J Ferment Technol 54:356–360
    [Google Scholar]
  19. Nishihara H., Toraya T., Fukui S. 1977; Effect of chemical modification on cell surface components of a brewer?s yeast on the floe forming ability.. Arch Microbiol 115:19–23
    [Google Scholar]
  20. Pancholi V., Fischetti V.A. 1992; A major surface protein on group A Steptococci is a glyceraldehyde-3-phosphate dehydrogenase with a multiple binding activity.. J Exp Med 176:415–423
    [Google Scholar]
  21. Perucho M., Salas J., Salas M.L. 1977; Identification of the mammalian DNA-binding protein P8 as a glyceraldehyde-3-phosphate dehydrogenase.. Eur J Biochem 81:557–560
    [Google Scholar]
  22. Ram A.F.J., Wolters A., Ten Hoopen R., Klis F.M. 1994; A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white.. Yeast 10:1019–1030
    [Google Scholar]
  23. Robbins A.R., Ward R.D., Oliver C. 1995; A mutation in glyceraldehyde 3-phosphate dehydrogenase alters endocytosis in CHO Cells.. J Cell Biol 130:1093–1104
    [Google Scholar]
  24. Rothstein R.J. 1983; One-step gene disruption in yeast.. Methods Enzymol 101:202–210
    [Google Scholar]
  25. Russell I., Stewart G.G., Reader H.P., Johnston J.R., Martin P.A. 1980; Revised nomenclature of genes that control flocculation.. J Inst Brew 86:120–121
    [Google Scholar]
  26. Sá Correia I., van Uden N. 1982; Effects of ethanol on thermal death and on the maximum temperature for growth of the yeast Kluyveromyces fragilis.. Biotechnol Lett 4:805–808
    [Google Scholar]
  27. Saito K., Sato S., Shimoi H., lefugi H., Tadenuma M. 1990; Flocculation mechanism of Hansenula anomala.. Agric Biol Chem 54:1425–1432
    [Google Scholar]
  28. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  29. Simon M., Binder M., Adam G., Hartig A., Ruis H. 1992; Control of peroxisome proliferation in Saccharomyces cerevisiaeby ADR1, SNF1, and SNF4.. Yeast 8:303–309
    [Google Scholar]
  30. Singh R., Green M.R. 1993; Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase.. Science 259:365–368
    [Google Scholar]
  31. Stewart G.G., Russell I. 1977; The identification, charac-terization, and mapping of a gene for flocculation in Saccharomyces sp.. Can J Microbiol 23:441–447
    [Google Scholar]
  32. Stewart G.G., Garrison I., Goring T.G., Meleg M., Pipats P., Russell I. 1976; Biochemical and genetic studies on yeast flocculation.. Kem Kemi 3:465–479
    [Google Scholar]
  33. Stratford M., Carter A. 1993; Yeast flocculation: lectin synthesis and activation.. Yeast 9:371–378
    [Google Scholar]
  34. Straver M.H., Smit G., Kijne J.W. 1993; Induced cell surface hydrophobicity influences flocculation of brewer?s yeast in flocculation assay.. Colloids SurfB Biointerf 2:173–180
    [Google Scholar]
  35. Teunissen A.W.R.H., Van den Berg J.A., Steensma H.Y. 1993; Physical localization of the gene Flo1 on a chromosome I of Saccharomyces cerevisiae.. Yeast 9:1–10
    [Google Scholar]
  36. Veenhuis M., van Dijken J.P., Pilon S.A.F., Harder W. 1978; Development of crystaline peroxisomes in methanol-grown cells of the yeast Flansenula polymorpha and its relation to environmental conditions.. Arch Microbiol 117:153–163
    [Google Scholar]
  37. Vergères G., Yen T.S.B., Aggeler J., Lausier J., Waskell L. 1993; A model system for studying membrane biogenesis: overexpression of cytochrome b5 in yeast results in marked proliferation of the intracellular membrane.. J Cell Sci 106:249–259
    [Google Scholar]
  38. Vezinhet F., Blondin B., Barre P. 1991; Mapping of the Flo5gene of Saccharomyces cerevisiae by transfer of a chromosome during cytoduction.. Biotechnol Lett 13:47–52
    [Google Scholar]
  39. Vivier D., Ratomahenina R., Moulin G., Galzy P. 1993; Study of physicochemical factors limiting the growth of Kluyveromyces marxianus.. J Indust Microbiol 11:157–161
    [Google Scholar]
  40. Wright R., Bassom M., D?ari L., Rine J. 1988; Increased amounts of HGM-CoA reductase induce “Karmellae”: a pro-liferation of stacked membrane pairs surrounding the yeast nucleus.. J Cell Biol 107:101–114
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-3-681
Loading
/content/journal/micro/10.1099/00221287-144-3-681
Loading

Data & Media loading...

Most cited Most Cited RSS feed