Bioremediation: towards a credible technology Free

Abstract

Bioremediation is the technological process whereby biological systems are harnessed to effect the clean-up of environmental pollutants. Currently, microbial systems are most widely employed in bioremediation programmes, generally in the treatment of soils and waters contaminated with organic pollutants. Micro-organisms have a huge metabolic repertoire that enables them to degrade a panoply of organic pollutants and in many cases the complex biochemistry and molecular biology of the catabolic pathways involved have been unravelled (e.g. Gibson, 1984; Frantz , 1987; Evans & Fuchs, 1988; Burlage , 1989; Abramowicz, 1990; Assinder & Williams, 1990; Chaudhry & Chapalamadugu, 1991; Cerniglia, 1992; Knackmuss, 1996). Despite valuable basic knowledge on the mechanisms of pollutant bio-degradation, bioremediation has yet to be accepted as a routine treatment technology and the environmental industry is wary of applying bioremediation for the treatment of contaminated sites.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-3-599
1998-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/3/mic-144-3-599.html?itemId=/content/journal/micro/10.1099/00221287-144-3-599&mimeType=html&fmt=ahah

References

  1. Abramowicz D.A. 1990; Aerobic and anaerobic biodegradation of PCBs: a review.. Crit Rev Biotechnol 10:241–249
    [Google Scholar]
  2. Aggarwal P.K., Hinchee R.E. 1991; Monitoring in situ biodegradation of hydrocarbons using stable carbon isotopes.. Environ Sci Technol 25:1179–1180
    [Google Scholar]
  3. Aggarwal P.K., Fuller M.E., Gurgas M.M., Manning J.F., Dillon M.A. 1997; Use of stable isotope analyses for monitoring the pathways and rates of intrinsic and enhanced in situbiodegradation.. Environ Sci Technol 31:590–596
    [Google Scholar]
  4. Alexander M. 1994 Biodegradation and Bioremediation. San Diego:: Academic Press.;
    [Google Scholar]
  5. Apajalahti J.H.A., Salkinoja-Salonen M.S. 1987; Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus.. J Bacteriol 169:675–681
    [Google Scholar]
  6. Aronstein B.N., Calvillo Y.M., Alexander M. 1991; Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil.. Environ Sci Technol 25:1728–1731
    [Google Scholar]
  7. Assinder S.J., Williams P.A. 1990; The TOL plasmids: determinants of the catabolism of toluene and the xylenes.. Adv Microb Physiol 31:2–69
    [Google Scholar]
  8. Bachmann A., de Bruin W., Jumelet J.C., Rijnaarts H.H.N., Zehnder A.J.B. 1988; Aerobic mineralization of alpha-hexa-chlorocyclohexane in contaminated soil.. Appl Environ Microbiol 54:548–554
    [Google Scholar]
  9. Bedard D.L., May R.J. 1996; Characterization of the polychlorinated biphenyls in the sediments of Woods Pond - evidence for microbial dechlorination of Aroclor 1260.. Environ Sci Technol 30:237–245
    [Google Scholar]
  10. Bedard D.L., Bunnell S.C., Smullen L.A. 1996; Stimulation of para-dechlorination of polychlorinated biphenyls that have persisted in Housatonic River sediments for decades.. Environ Sci Technol 30:687–694
    [Google Scholar]
  11. Belin D. 1996; The RNase protection assay.. In Basic DNA and RNA Protocols pp. 131–136 Harwood A.J. Edited by Totowa:: Humana Press.;
    [Google Scholar]
  12. Beller H.R., Reinhard M., Grbic-Galic D. 1992; Metabolic by-products of toluene degradation by sulfate-reducing enrichment cultures.. Appl Environ Microbiol 58:3192–3195
    [Google Scholar]
  13. Beller H.R., Ding W.-H., Reinhard M. 1995; Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situbioremediation.. Environ Sci Technol 29:2864–2870
    [Google Scholar]
  14. Beurskens J.E.M., Dekker C.G.C., Jonkhoff J., Bontstra L. 1993; Microbial dechlorination of hexachlorobenzene in a sedimentation area of the Rhine river.. Biogeochemistry 19:61–81
    [Google Scholar]
  15. Bhandari A., Novak J.T., Berry D.F. 1996; Binding of 4-monochlorophenol to soil.. Environ Sci Technol 30:2305–2311
    [Google Scholar]
  16. Bogan B.W., Schoenike B., Lamar R.T., Cullen D. 1996; Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium.. Appl Environ Microbiol 62:2381–2386
    [Google Scholar]
  17. Borden R.C., Gomez C.A., Becker M.T. 1995; Geochemical indicators of intrinsic bioremediation.. Ground Water 33:180–189
    [Google Scholar]
  18. Bosma T.N.P., Middeldrop P.J.M., Schraa G., Zehnder A.J.B. 1997; Mass transfer limitation of biotransformation: quantifying bioavailability.. Environ Sci Technol 31:248–252
    [Google Scholar]
  19. Bouillot P., Canales A., Pareilleux A., Huyard A., Goma G.J. 1990; Membrane bioreactors for the evaluation of maintenance phenomena in waste-water treatment.. J Ferment Bioeng 69:178–183
    [Google Scholar]
  20. Bragg J.R., Prince R.C., Wilkinson J.B., Atlas R.M. 1992; Bioremediation for shoreline cleanup following the 1989 Alaskan oil spill.. Houston:: Exxon Company.;
    [Google Scholar]
  21. Bragg J.R., Prince R.C., Harner E.J., Atlas R.M. 1994; Effectiveness of bioremediation for the Exxon Valdez oil spill.. Nature 368:413–418
    [Google Scholar]
  22. Brockman F.J. 1995; Nucleic acid-based methods for monitoring the performance of in situ bioremediation.. Mol Ecol 4:567–578
    [Google Scholar]
  23. Burlage R.S., Hooper S.W., Sayler G.S. 1989; The TOL (pWWO) catabolic plasmid.. Appl Environ Microbiol 55:1323–1328
    [Google Scholar]
  24. Carmichael L.M., Christman R.F., Pfaender F.K. 1997; Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils.. Environ Sci Technol 31:126–132
    [Google Scholar]
  25. Carroll K.M., Harkness M.R., Bracco A.A., Balcarcel R.R. 1994; Application of a permeant polymer diffusional model to the desorption of polychlorinated-biphenyls from Hudson River sediments.. Environ Sci Technol 28:253–258
    [Google Scholar]
  26. Cerniglia C.E. 1992; Biodegradation of polycyclic aromatic hydrocarbons.. Biodegradation 3:351–368
    [Google Scholar]
  27. Chapelle F.H., Morris J.T., McMahon P.B., Zelibor J.L. Jr 1988; Bacterial metabolism and the δ13 C composition of ground water, Floridian aquifer system, South Carolina.. Geology 16:117–121
    [Google Scholar]
  28. Chaudhry R.G., Chapalamadugu S. 1991; Biodegradation of halogenated organic compounds.. Microbiol Rev 55:59–79
    [Google Scholar]
  29. Chesboro W., Evans T., Eifert R. 1979; Very slow growth of Escherichia coli.. J Bacteriol 139:625–638
    [Google Scholar]
  30. Cornelissen G., van Noort P.C.M., Parsons J.R., Govers H.A.J. 1997; Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments.. Environ Sci Technol 31:454–460
    [Google Scholar]
  31. Daly K., Dixon A.C., Swannell R.P.J., Lepo J.E., Head I.M. 1997; Diversity among aromatic hydrocarbon-degrading bacteria and their meta-cleavage genes.. J Appl Microbiol 83:421–429
    [Google Scholar]
  32. Deitsch J.J., Smith J.A. 1995; Effect of Triton-X-100 on the rate of trichloroethene desorption from soil to water.. Environ Sci Technol 29:1069–1080
    [Google Scholar]
  33. Doelman P.L., Haanstra H., Loonen H., Vos A. 1990; Decomposition of alpha-hexachlorocyclohexane and beta-hexa-chlorocyclohexane in soil under field conditions in a temperate climate.. Soil Biol Biochem 22:629–639
    [Google Scholar]
  34. Efroymson R.A., Alexander M. 1991; Biodegradation by an Arthrobacter species, of hydrocarbons partitioned into an organic solvent.. Appl Environ Microbiol 57:1441–1447
    [Google Scholar]
  35. Erb R.W., Wagner-Dobbler I. 1993; Detection of polychlorinated biphenyl degradation genes in polluted sediments by direct DNA extraction and polymerase chain reaction.. Appl Environ Microbiol 59:4065–4073
    [Google Scholar]
  36. Erickson D.C., Loehr R.C., Neuhauser E.F. 1993; PAH loss during bioremediation of manufactured gas plant site soils.. Water Res 27:911–919
    [Google Scholar]
  37. Evans P.J., Ling W., Goldschmidt B., Ritter E.R., Young L.Y. 1992; Metabolites formed during anaerobic transformation of toluene and ortho-xylene and their proposed relationship to the initial steps of toluene mineralization.. Appl Environ Microbiol 58:496–501
    [Google Scholar]
  38. Evans W.C., Fuchs G. 1988; Anaerobic degradation of aromatic compounds.. Annu Rev Microbiol 42:289–317
    [Google Scholar]
  39. Fayad N.M., Edora R.L., El-Mubarak A.H., Polancos A.B. 1992; Effectiveness of a bioremediation product in degrading the oil spilled in the 1991 Arabian Gulf war.. Bull Environ Contam Toxicol 49:787–796
    [Google Scholar]
  40. Fleming S.T., Sanseverino J., Sayler G.S. 1993; Quantitative relationship between naphthalene catabolic gene-frequency and expression in predicting PAH degradation in soils at town gas manufacturing sites.. Environ Sci Technol 27:1068–1074
    [Google Scholar]
  41. Frantz B., Aldrich T., Chakrabarty A.M. 1987; Microbial degradation of synthetic recalcitrant compounds.. Biotechnol Adv 5:85–99
    [Google Scholar]
  42. Gibson D.T. 1984 Microbial Degradation of Organic Com-pounds. New York:: Marcel Dekker.;
    [Google Scholar]
  43. Harkness M.R., McDermott J.B., Abramowicz D.A. 16 other authors 1993; In situ stimulation of aerobic PCB biodegradation in Hudson River sediments.. Science 259:503–507
    [Google Scholar]
  44. Heitzer A., Webb O.F., Thonnard J.E., Sayler G.S. 1992; Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium.. Appl Environ Microbiol 58:1839–1846
    [Google Scholar]
  45. Heitzer A., Malachowsky K., Thonnard J.E., Bienkowski P.R., White D.C., Sayler G.S. 1994; Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium.. Appl Environ Microbiol 60:1487–1494
    [Google Scholar]
  46. Hunter M.A., Kan A.T., Tomson M.B. 1996; Development of a surrogate sediment to study the mechanisms responsible for adsorption/desorption hysteresis.. Environ Sci Technol 30:2278–2285
    [Google Scholar]
  47. Jackson A.W., Pardue J.H., Araujo R.A. 1996; Monitoring of crude oil mineralization in salt marshes: use of stable carbon isotope ratios.. Environ Sci Technol 30:1139–1144
    [Google Scholar]
  48. Jaspers C., Ewbank G., McCarthy A.J., Penninckx M.J. 1997; Cattle manure compost for bioremediation of pentachlorophenol in contaminated soil and wood material. The metabolic fate of the xenobiotic.. In Proceedings of the International Symposium on Environmental Biotechnology pp. 1–4 Verachtert H., Verstraete W. Edited by Antwerp:: Technologisch Institut Antwerpen.;
    [Google Scholar]
  49. Joshi B., Walia S. 1996; PCR amplification of catechol 2,3-dioxygenase gene sequences from naturally occurring hydro-carbon-degrading bacteria isolated from petroleum hydrocarbon contaminated groundwater.. FEMS Microbiol Ecol 19:5–15
    [Google Scholar]
  50. Kan A.T., Fu G., Tomson M.B. 1994; Adsorption/desorption hysteresis in organic pollutant and soil/sediment interactions.. Environ Sci Technol 28:859–867
    [Google Scholar]
  51. Kastner M. 1991; Reductive dechlorination of tri- and tetra- chloroethylenes depends on transition from aerobic to anaerobic conditions.. Appl Environ Microbiol 57:2039–2046
    [Google Scholar]
  52. Kelsey J.W., Kottler B.D., Alexander M. 1997; Selective chemical extractants to predict bioavailability of soil-aged organic chemicals.. Environ Sci Technol 31:214–217
    [Google Scholar]
  53. Knackmuss H.-J. 1996; Basic knowledge and perspectives of bioelimination of xenobiotic compounds.. J Biotechnol 51:287–295
    [Google Scholar]
  54. Knaebel D.B., Federle T.W., McAvoy D.C., Vestal J.R. 1994; Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil.. Appl Environ Microbiol 60:4500–4508
    [Google Scholar]
  55. Kukor J.J., Olsen R.H. 1996; Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments.. Appl Environ Microbiol 62:1728–1740
    [Google Scholar]
  56. Laine M.M., Jørgensen K.S. 1996; Straw compost and bioremediated soil as iriocula for bioremediation of chlorophenol-contaminated soil.. Appl Environ Microbiol 62:1507–1513
    [Google Scholar]
  57. Lamar R.T., Schoenike B., Van den Wyemelenberg A., Stewart P., Dietrich D.M., Cullen D. 1995; Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil.. Appl Environ Microbiol 61:2122–2126
    [Google Scholar]
  58. Landmeyer J.E., Vroblesky D.A., Chapelle F.H. 1996; Stable carbon isotope evidence of biodegradation zonation in a shallow jet-fuel contaminated aquifer.. Environ Sci Technol 30:1120–1128
    [Google Scholar]
  59. Liu Z., Jacobson A.M., Luthy R.G. 1995; Biodegradation of naphthalene in aqueous non-ionic surfactant systems.. Appl Environ Microbiol 61:145–151
    [Google Scholar]
  60. Massol-Deya A., Weller R., Rios-Hernandez L., Zhou J.-Z., Hickey R.F., Tiedje J.M. 1997; Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater.. Appl Environ Microbiol 63:270–276
    [Google Scholar]
  61. Mundell K.M. 1994 The biodegradation potential of Phanerochaete chrysosporium and Penicillium thornii in reducing PAH concentration in soil from a disused coal extraction plant. MSc thesis University of Newcastle.:
    [Google Scholar]
  62. Pignatello J.J., Xing B. 1996; Mechanisms of slow sorption of organic chemicals to natural particles.. Environ Sci Technol 30:1–11
    [Google Scholar]
  63. Pritchard P.H., Costa C.F. 1991; EPA̓s Alaska oil-spill bioremediation project.. Environ Sci Technol 25:372–379
    [Google Scholar]
  64. Providenti M.A., Fleming C.A., Lee H., Trevors J.T. 1995; Effect of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries.. FEMS Microbiol Ecol 17:15–26
    [Google Scholar]
  65. Rijnaarts H.H.M., Bachmann A., Jumelet J.C., Zehnder A.J.B. 1990; Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of σ-hexachlorocyclohexane in a contaminated calcareous soil.. Environ Sci Technol 24:1349–1354
    [Google Scholar]
  66. Rohmer M., Bouvier-Nave P., Ourisson G. 1984; Distribution of hopanoid triterpenes in prokaryotes.. J Gen Microbiol 130:1137–1150
    [Google Scholar]
  67. Steiert J.G., Crawford R.L. 1986; Catabolism of penta-chlorophenol by a Flavobacterium sp.. Biochem Biophys Res Commun 141:825–830
    [Google Scholar]
  68. Steinberg S.M., Pignatello J.J., Sawhney B.L. 1987; Persistence of 1,2-dibromoethane in soils-entrapment in intraparticle micropores.. Environ Sci Technol 21:1201–1208
    [Google Scholar]
  69. Tabak H.H., Gao C., Lai L., Yan X., Pfanstiel S., Kim I.S., Govind R. 1994; Determination of bioavailability and bio-degradation kinetics of phenol and alkylphenols in soil.. Am Chem Soc Symp Series 554:51–77
    [Google Scholar]
  70. Tros M.E., Schraa G., Zehnder A.J.B. 1996a; Transformation of low concentrations of 3-chlorobenzoate by Pseudomonas sp. strain B13: kinetics and residual concentrations.. Appl Environ Microbiol 62:437–442
    [Google Scholar]
  71. Tros M.E., Bosma T.N., Schraa G., Zehnder A.J.B. 1996b; Measurement of minimum substrate concentrations (Smln) in a recycling fermenter and its prediction from the kinetic parameters oiPseudomonas sp. strain B13 from batch and chemostat cultures.. Appl Environ Microbiol 61:145–151
    [Google Scholar]
  72. Weissenfels W.D., Klewer H.J., Langhoff J. 1992; Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles - influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696
    [Google Scholar]
  73. Wu S., Gschwend P.M. 1986; Sorption kinetics of hydrophobic organic compounds to natural sediments and soils.. Environ Sci Technol 20:717–725
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-3-599
Loading
/content/journal/micro/10.1099/00221287-144-3-599
Loading

Data & Media loading...

Most cited Most Cited RSS feed