1887

Abstract

A sulfite-reductase-type protein was purified from the hyperthermophilic crenarchaeote Pyrobaculum islandicum grown chemoorganoheterotrophically with thiosulfate as terminal electron acceptor. In common with dissimilatory sulfite reductases the protein has an α α β structure and contains high-spin sirohaem, non-haem iron and acid-labile sulfide. The oxidized protein exhibits absorption maxima at 280, 392, 578 and 710 nm with shoulders at 430 and 610 nm. The isoelectric point of pH 8.4 sets the protein apart from all dissimilatory sulfite reductases characterized thus far. The genes for the α- and β-subunits ( and ) are contiguous in the order and most probably comprise an operon with the directly following and genes. and encode products which are homologous to eukaryotic glutathione -transferases and the proposed α-subunit of sulfite reductase, respectively. and encode 44.2 kDa and 41.2 kDa peptides which show significant similarity to the two homologous subunits DsrA and DsrB of dissimilatory sulfite reductases. Phylogenetic analyses indicate a common protogenotic origin of the protein and the dissimilatory sulfite reductases from sulfate-reducing and sulfide-oxidizing prokaryotes. However, the protein from and the sulfite reductases from sulfate-reducers and from sulfur-oxidizers most probably evolved into three independent lineages prior to divergence of archaea and bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-2-529
1998-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/2/mic-144-2-529.html?itemId=/content/journal/micro/10.1099/00221287-144-2-529&mimeType=html&fmt=ahah

References

  1. Adams M. W. W. 1990; The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria.. FEMS Microbiol Lett 75:219–238
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  3. Arendsen A. F., Verhagen M. F. J., M., Wolbert R. B. G., Pierik A. J., Stams A. J. M., Jetten M. S. M., Hagen W. R. 1993; The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S = 9/2 iron–sulfur clusters.. Biochemistry 32:10323–10330
    [Google Scholar]
  4. Ausubel F. A., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1996 Current Protocols in Molecular Biology New York: John Wiley;
    [Google Scholar]
  5. Back E., Burkhart W., Moyer M., Privalle L., Rothstein S. 1988; Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction.. Mol Gen Genet 212:20–26
    [Google Scholar]
  6. Benner S. A., Ellington A. D. 1990; ‘Progenote’ or ‘protogenote’?. Science 248:943–944
    [Google Scholar]
  7. Brittain T., Blackmore R., Greenwood C., Thomson A. J. 1992; Bacterial nitrite-reducing enzymes.. Eur J Biochem 209:793–802
    [Google Scholar]
  8. Brown J. W., Daniels C. J., Reeve J. N. 1989; Gene structure, organization, and expression in archaebacteria.. Crit Rev Microbiol 16:287–338
    [Google Scholar]
  9. Campbell W. H., Kinghorn J. R. 1990; Functional domains of assimilatory nitrate reductases and nitrite reductases.. Trends Biochem Sci 15:315–319
    [Google Scholar]
  10. Cole J. A. 1988 Assimilatory and dissimilatory reduction of nitrate to ammonia.. In The Nitrogen and Sulphur Cycles pp 281–329 Edited by Cole J. A., Ferguson S. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  11. Cram D. S., Sherf B. A., Libby R. T., Mattaliano R. J., Ramachandran K., L & Reeve J. N. 1987; Structure and expression of the genes, mcrBDCGA, which encode the subunits of component C of methyl coenzyme M reductase in Methanococcus vanniellii . Proc Natl Acad Sci USA 84:3992–3996
    [Google Scholar]
  12. Crane B. R., Getzoff E. D. 1996; The relationship between structure and function for the sulfite reductases.. Curr Opin Struct Biol 6:744–756
    [Google Scholar]
  13. Crane B. R., Siegel L. M., Getzoff E. D. 1995; Sulfite reductase structure at 1.6 Å: evolution and catalysis for reduction of inorganic anions.. Science 270:59–67
    [Google Scholar]
  14. Cue D., Beckler G. S., Reeve J. N., Konisky J. 1985; Structure and sequence diversity of two archaebacterial genes.. Proc Natl Acad Sci USA 82:4207–4211
    [Google Scholar]
  15. Dahl C., Trüper H. G. 1994; Enzymes of dissimilatory sulfide oxidation in phototrophic bacteria.. Methods Enzymol 243:400–421
    [Google Scholar]
  16. Dahl C., Kredich N. M., Deutzmann R., Trüper H. G. 1993; Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes.. J Gen Microbiol 139:1817–1828
    [Google Scholar]
  17. Dahl C., Speich N., Trüper H. G. 1994; Enzymology and molecular biology of sulfate reduction in the extremely thermophilic archaeon Archaeoglobus fulgidus . Methods Enzymol 243:331–349
    [Google Scholar]
  18. Dalgaard J. Z., Garrett R. A. 1993 Archaeal hyperthermophile genes.. In The Biochemistry of Archaea (Archaebacteria) pp 535–563 Edited by Kates M., Kushner D. J., Matheson A. T. Amsterdam: Elsevier;
    [Google Scholar]
  19. Dayhoff M. O., Schwartz R. M., Orcutt B. C. 1978 A model of evolutionary change in proteins.. In Atlas of Protein Sequence and Structure pp 345–352 Edited by Dayhoff M. O. Washington, DC: National Biochemical Research Foundation;
    [Google Scholar]
  20. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  21. Dirr H., Reinemer P., Huber R. 1994; Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2.1 Å resolution.. J Mol Biol 243:72–92
    [Google Scholar]
  22. Drake H. L., Akagi J. M. 1977; Bisulfite reductase of Desulfovibrio vulgaris: explanation for product formation.. J Bacteriol 132:139–143
    [Google Scholar]
  23. Fauque G., Lino A. R., Czechowski M., Kang L., DerVartanian D. V., Moura J. J. G., LeGall J., Moura I. 1990; Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands.. Biochim Biophys Acta 1040:112–118
    [Google Scholar]
  24. Fauque G., LeGall J., Barton L. L. 1991 Sulfate-reducing and sulfur-reducing bacteria.. In Variations in Autotrophic Life pp 271–337 Edited by Shively J. M., Barton L. L. New York: Academic Press;
    [Google Scholar]
  25. Felsenstein J. 1993; PHYLIP (Phylogeny Inference Package) version 3.5c.. ftp.bio.indiana.edu/molbio/evolve
  26. Fitz-Gibbon S., Choi A. J., Miller J. H., Stetter K. O., Simon M. I., Swanson R., Kim U. -J. 1997; A fosmid-based genomic map and identification of 474 genes of the hyperthermophilic archaeon Pyrobaculum aerophilum . Extremophilis 1:36–51
    [Google Scholar]
  27. George D. G., Hunt L. T., Yeh L. -S., Barker W. C. 1985; New perspectives on bacterial ferredoxin evolution.. J Mol Evol 22:20–31
    [Google Scholar]
  28. George D. G., Barker W. C., Hunt L. T. 1990; Mutation data matrix and its uses.. Methods Enzymol 183:333–351
    [Google Scholar]
  29. Gogarten J. P. 1994; Which is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages.. J Mol Evol 39:541–543
    [Google Scholar]
  30. Hain J., Reiter W. -D., Hüdepohl U., Zillig W. 1992; Elements of an archaeal promoter defined by mutational analysis.. Nucleic Acids Res 20:5423–5428
    [Google Scholar]
  31. Hatchikian E. C., Zeikus J. G. 1983; Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfo-bacterium commune . J Bacteriol 153:1211–1220
    [Google Scholar]
  32. Hedrick J., L & Smith A. J. 1968; Size and charge isomer separation and estimation of molecular weights of proteins by disc electrophoresis.. Arch Biochem Biophys 126:155–164
    [Google Scholar]
  33. Henkle K. J., Davern K. M., Wright M. D., Ramos A. J., Mitchell G. F. 1990; Comparison of the cloned genes of the 26- and 28-kilodalton glutathione-S-transferases of Schistosoma japonicum and Schistosoma mansoni . Mol Biochem Parasitol 40:23–34
    [Google Scholar]
  34. Higgins D. G., Sharp P. M. 1989; CLUSTAL: a package for performing multiple sequence alignment on a microcomputer.. Gene 73:237–244
    [Google Scholar]
  35. Hipp W. M., Pott A. S., Thum-Schmitz N., Faath I., Dahl C., Trüper H. G. 1997; Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes.. Microbiology 143:2891–2902
    [Google Scholar]
  36. Huber R., Kristjanson J. K., Stetter K. O. 1987; Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C.. Arch Microbiol 149:95–101
    [Google Scholar]
  37. Ji X., Zhang P., Armstrong R. N., Gilliland G. L. 1992; The three-dimensional structure of a glutathione S-transferase from the mu gene class, structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-Å resolution.. Biochemistry 31:10169–10184
    [Google Scholar]
  38. Ji X., von Rosenvinge E. C., Johnson W. W., Tomarev S. I., Piatigorsky J., Armstrong R. N., Gilliland G. L. 1995; Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods.. Biochemistry 34:5317–5328
    [Google Scholar]
  39. Karkhoff-Schweizer R. R., Bruschi M., Voordouw G. 1993; Expression of the γ-subunit gene of desulfoviridin-type dissimilatory sulfite reductase and of the α- and β-subunit genes is not coordinately regulated.. Eur J Biochem 211:501–507
    [Google Scholar]
  40. Karkhoff-Schweizer R. R., Huber D. P. W., Voordouw G. 1995; Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR.. Appl Environ Microbiol 61:290–296
    [Google Scholar]
  41. King T. E., Morris R. O. 1966; Determination of acid-labile sulfide and sulfhydryl groups.. Methods Enzymol 10:634–637
    [Google Scholar]
  42. Kinghorn J. R., Campbell E. I. 1989 Amino acid sequence relationships between bacterial, fungal, and plant nitrate and nitrite reductase proteins.. In Molecular and Genetic Aspects of Nitrate Assimilation pp 385–403 Edited by Wray J. L., Kinghorn J. R. Oxford: Oxford Science Publications;
    [Google Scholar]
  43. Kletzin A. 1994; Sulfur oxidation and reduction in archaea. Sulfur oxygenase/reductase and hydrogenases from the extremely thermophilic and facultatively anaerobic archaeon Desulfurolobus ambivalens . Syst Appl Microbiol 16:534–543
    [Google Scholar]
  44. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein.. J Mol Biol 157:105–132
    [Google Scholar]
  45. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  46. Lee J. -P., Peck H. D. Jr 1971; Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin.. Biochem Biophys Res Commun 45:583–589
    [Google Scholar]
  47. Lee J. -P., LeGall J., Peck H. D. Jr 1973a; Isolation of assimilatory- and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris . J Bacteriol 115:529–542
    [Google Scholar]
  48. Lee J. -P., Yi C. -S., LeGall J., Peck H. D. Jr 1973b; Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction.. J Bacteriol 115:453–455
    [Google Scholar]
  49. LeGall J., Fauque G. 1988 Dissimilatory reduction of sulfur compounds.. In Biology of Anaerobic Microorganisms pp 587–639 Edited by Zehnder A. J. B. New York: John Wiley;
    [Google Scholar]
  50. Lin J. T., Goldman B. S., Stewart V. 1993; Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al.. J Bacteriol 175:2370–2378
    [Google Scholar]
  51. Liu M. C., Peck H. D. Jr 1981; Isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase.. J Biol Chem 256:13159–13164
    [Google Scholar]
  52. Ma K., Adams M. W. W. 1994; Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur.. J Bacteriol 176:6509–6517
    [Google Scholar]
  53. Ma K., Schicho R. N., Kelly R. M., Adams M. W. 1993; Hydrogenase of the hyperthermophilic Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor.. Proc Natl Acad Sci USA 90:5341–5344
    [Google Scholar]
  54. Massey V. 1957; Studies on succinic dehydrogenase. VII. Valency state of the iron in beef heart dehydrogenase.. J Biol Chem 229:763–770
    [Google Scholar]
  55. Miller J. H. 1972 Experiments in Molecular Genetics pp 431–433 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  56. Murphy M. J., Siegel L. M., Tove S. R., Kamin H. 1974; Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases.. Proc Natl Acad Sci USA 71:612–616
    [Google Scholar]
  57. Olsen J., Woese C. R. 1994; The winds of (evolutionary) change: breathing new life into microbiology.. J Bacteriol 176:1–6
    [Google Scholar]
  58. Ostrowski J., Wu J. -Y., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. 1989; Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B.. J Biol Chem 264:15726–15737
    [Google Scholar]
  59. Peakman T., Crouzet J., Mayaux J. F., Busby S., Mohan S., Harborne N., Wootton J., Nicolson R., Cole J. 1990; Nucleotide sequence, organisation and structural analysis of the products of genes in the nirBcysG region of the Escherichia coli K12 chromosome.. Eur J Biochem 191:1864–1873
    [Google Scholar]
  60. Peck H. D. Jr, LeGall J. 1982; Biochemistry of dissimilatory sulphate reduction.. Philos Trans R Soc Lond Ser B Biol Sci 298:443–466
    [Google Scholar]
  61. Peck H. D. Jr, Lissolo T. 1988 Assimilatory and dissimilatory sulfate reduction: enzymology and bioenergetics.. In The Nitrogen and Sulfur Cycles pp 99–132 Edited by Cole J. A., Ferguson S. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  62. Pedroni P., Della Volpe A., Galli G., Mura G. M., Pratesi C., Grandi G. 1995; Characterization of the locus encoding the [Ni–Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases.. Microbiology 141:449–458
    [Google Scholar]
  63. Pfennig N., Biebl H. 1976; Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic sulfur-reducing, acetate-oxidizing bacterium.. Arch Microbiol 110:3–12
    [Google Scholar]
  64. Pierik A. J., Duyvis M. G., van Helvoort J. M. L., M., Wolbert R. B. G., Hagen W. R. 1992; The third subunit of desulfoviridin-type dissimilatory sulfite reductases.. Eur J Biochem 205:111–115
    [Google Scholar]
  65. Reeve J. N., Hamilton P. T., Beckler G. S., Morris C. J., Clarke C. H. 1986; Structure of methanogen genes.. Syst Appl Microbiol 7:5–10
    [Google Scholar]
  66. Reisfeld R. A., Lewis U. J., Williams D. E. 1962; Disk electrophoresis of basic proteins and peptides on polyacrylamide gels.. Nature 195:281–283
    [Google Scholar]
  67. Romero L C., Galvan F., Vega J. M. 1987; Purification and properties of the siroheme-containing ferredoxin-nitrite reductase from Chlamydomonas reinhardtii . Biochim Biophys Acta 914:55–63
    [Google Scholar]
  68. Rossi M., Pollock B. R., Reiji M. W., Keon R. G., Fu R., Voordouw G. 1993; The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex.. J Bacteriol 175:4699–4711
    [Google Scholar]
  69. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  70. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  71. Schauder R., Kröger A. 1993; Bacterial sulphur respiration.. Arch Microbiol 152:423–497
    [Google Scholar]
  72. Schedel M., Trüper H. G. 1979; Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties.. Biochim Biophys Acta 568:454–467
    [Google Scholar]
  73. Schedel M., Vanselow M., Trüper H. G. 1979; Siroheme sulfite reductase from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties.. Arch Microbiol 121:29–36
    [Google Scholar]
  74. Siegel L. M., Murphy M. J., Kamin H. 1978; Siroheme methods for isolation and characterization.. Methods Enzymol 52:436–447
    [Google Scholar]
  75. Siegel L. M., Wilkerson J. O., Janick P. A. 1987 Structural studies on the siroheme [4Fe4S] cluster active center of spinach ferredoxin-nitrite reductase and Escherichia coli sulfite reductase.. In Inorganic Nitrogen Metabolism pp 118–122 Edited by Ullrich W. R., Aparacio P. J., Syrett P. J., Castillo F. New York: Springer;
    [Google Scholar]
  76. Sinning I., Kleyweg G. J., Cowan S. W. 10 other authors 1993; Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes.. J Mol Biol 232:192–212
    [Google Scholar]
  77. Skyring G. W., Donnelly T. H. 1982; Precambrian sulfur isotopes and a possible role for sulfite in the evolution of biological sulfate reduction.. Precambrian Res 17:41–61
    [Google Scholar]
  78. Speich N., Dahl C., Heisig P., Klein A., Lottspeich F., Stetter K. O., Trüper H. G. 1994; Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron–sulphur flavoproteins.. Microbiology 140:1273–1284
    [Google Scholar]
  79. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic archaea.. FEMS Microbiol Rev 75:117–124
    [Google Scholar]
  80. Steuber J., Cypionka H., Kroneck P. M. H. 1994; Mechanism of dissimilatory sulfite reduction by Desulfovibrio desulfuricans. Purification of a membrane-bound sulfite reductase and coupling with cytochrome c 3 and hydrogenase.. Arch Microbiol 162:255–260
    [Google Scholar]
  81. Steuber J., Arendsen A. F., Hagen W. R., Kroneck P. M. H. 1995; Molecular properties of the dissimilatory sulfite reductase from Desulfovibrio desulfuricans (Essex) and comparison with the enzyme from Desulfovibrio vulgaris (Hildenborough).. Eur J Biochem 233:873–879
    [Google Scholar]
  82. Stolzenberg A. M., Strauss S. H., Holm R. H. 1981; Iron (II, III)-chlorin and -isobacteriochlorin complexes. Models of the heme prosthetic groups in nitrite and sulfite reductases: means of formation and spectroscopic and redox properties.. J Am Chem Soc 103:4763–4778
    [Google Scholar]
  83. Tan J., Helms L R., Swenson R. P., Cowan J. A. 1991; Primary structure of the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough): cloning and nucleotide sequence of the reductase gene.. Biochemistry 30:9900–9907
    [Google Scholar]
  84. Tiboni O., Cammarano P., Sanangelantoni A. M. 1993; Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences.. J Bacteriol 175:2961–2969
    [Google Scholar]
  85. Tomarev S. I., Zinovieva R. D., Guo K., Piatigorsky J. 1993; Squid glutathione S-transferase. Relationships with other glutathione S-transferases and S-crystallins of cephalopods.. J Biol Chem 268:4534–4542
    [Google Scholar]
  86. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.. Proc Natl Acad Sci USA 76:4350–4354
    [Google Scholar]
  87. Trudinger P. A. 1970; Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction.. J Bacteriol 104:158–170
    [Google Scholar]
  88. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum.. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  89. Widdel F. 1988 Microbiology and ecology of sulfate- and sulfur-reducing bacteria.. In Biology of Anaerobic Microorganisms pp 469–585 Edited by Zehnder J. B. New York: John Wiley;
    [Google Scholar]
  90. Widdel F., Hansen T. A. 1992 The dissimilatory sulfate- and sulfur-reducing bacteria.. In The Prokaryotes 2nd edn., pp 583–624 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. -H. New York: Springer;
    [Google Scholar]
  91. Widersten M., Kolm R. H., Bjornestedt R., Mannervik B. 1992; Contribution of five amino acid residues in the glutathione binding site to the function of glutathione transferase P1-1.. Biochem J 285:377–381
    [Google Scholar]
  92. Wolfe B. M., Lui S. M., Cowan J. A. 1994; Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Purification, characterization, kinetics and EPR studies.. Eur J Biochem 223:79–89
    [Google Scholar]
  93. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-2-529
Loading
/content/journal/micro/10.1099/00221287-144-2-529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error