1887

Abstract

An arginine biosynthetic gene cluster, , of the extreme thermophilic bacterium HB27 was isolated by heterologous complementation of an acetylornithinase mutant. The recombinant plasmid (pTHM1) conferred ornithine acetyltransferase activity to the host, implying that uses the energetically more economic pathway for the deacetylation of acetylornithine. pTHM1 was, however, unable to complement an mutant and no acetylglutamate synthase activity could be detected in cells containing pTHM1. The -encoded enzyme is thus monofunctional and is unable to use acetyl-CoA to acetylate glutamate (contrary to the homologue). Alignment of several ornithine acetyltransferase amino acid sequences showed no obvious pattern that could account for this difference; however, the monofunctional enzymes proved to have shorter N-termini. Sequence analysis of the pTHM1 3.2 kb insert revealed the presence of the gene (encoding -acetylglutamate-5-semialdehyde dehydrogenase) upstream of the gene. Alignment of several -acetylglutamate-5-semialdehyde dehydrogenase amino acid sequences allowed identification of two strongly conserved putative motifs for cofactor binding: a putative FAD-binding site and a motif reminiscent of the NADPH-binding fingerprint. The relationship between the amino acid content of both enzymes and thermostability is discussed and an effect of the GC content bias is indicated. Transcription of both the and genes appeared to be vector-dependent. The -encoded enzyme activity was twofold repressed by arginine in the native host and was inhibited by ornithine. Both upstream of the gene and downstream of the gene an ORF with unknown function was found, indicating that the organization of the arginine biosynthetic genes in is new.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-2-479
1998-02-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/2/mic-144-2-479.html?itemId=/content/journal/micro/10.1099/00221287-144-2-479&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool.. J Mol Biol 251:403–410
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant DNA.. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  3. Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell B. E., Karlin S. 1992; Methods and algorithms for statistical analysis of protein sequences.. Proc Natl Acad Sci USA 89:2002–2006
    [Google Scholar]
  4. Crabeel M., Abadjeva A., Hilven P., Desimpelaere J., Soetens O. 1997; Characterization of the Saccharomyces cerevisiae ARG7 encoding ornithine acetyltransferase, an enzyme also endowed with acetylglutamate synthase activity.. Eur J Biochem (in press)
    [Google Scholar]
  5. Cunin R., Glansdorff N., Piérard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria.. Microbiol Rev 50:314–352
    [Google Scholar]
  6. Daniel R. M., Dines M., Petach H. H. 1996; The denaturation and degradation of stable enzymes at high temperatures.. Biochem J 317:1–11
    [Google Scholar]
  7. Davis R. H. 1986; Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisae . Microbiol Rev 50:280–313
    [Google Scholar]
  8. Degryse E., Glansdorff N., Piérard A. 1978; A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus . Arch Microbiol 117:189–196
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  10. Elseviers D. R., Cunin R., Glansdorff N., Baumberg S., Ashcroft E. 1972; Control regions within the argECBH gene cluster of Esherichia coli K12.. Mol Gen Genet 117:349–366
    [Google Scholar]
  11. Falmagne P., Vanderwinkel E., Wiame J. M. 1965; Mise en evidence de deux malate synthetases chez Escherichia coli . Biochim Biophys Acta 99:246–258
    [Google Scholar]
  12. Fani R., Lio P., Lazeano A. 1995; Molecular evolution of the histidine biosynthetic pathway.. J Mol Evol 41:760–774
    [Google Scholar]
  13. Floriano B., Herrero A., Flores E. 1992; Isolation of arginine auxotrophs, cloning by mutant complementation, and sequence analysis of the argC gene from the cyanobacterium Anabaena species PCC 7120.. Mol Microbiol 6:2085–2094
    [Google Scholar]
  14. Glansdorff N. 1965; Topography of cp-transducible arginine mutations in E. coli K12.. Genetics 51:167–179
    [Google Scholar]
  15. Glansdorff N. 1996 Biosynthesis of arginine and polyamines.. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 408–433 Edited by Neidhardt F. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Glansdorff N. 1997; On the origin of operons and their possible role in evolution towards thermophily.. J Mol Evol (in press)
    [Google Scholar]
  17. Haas D., Holloway B. W. 1977; The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa . Mol Gen Genet 154:7–22
    [Google Scholar]
  18. Hanukoglu I., Gutfinger T. 1989; cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases.. Eur J Biochem 180:479–484
    [Google Scholar]
  19. Hartmann R. K., Erdmann V. A. 1989; Thermus thermophilus HB8 16S rRNA is transcribed from an isolated transcription unit.. J Bacteriol 171:2933–2941
    [Google Scholar]
  20. Harwood C. R., Baumberg S. 1977; Arginine hydroxamate- resistant mutants of Bacillus subtilis with altered control of arginine metabolism.. J Gen Microbiol 100:177–188
    [Google Scholar]
  21. Haziza C., Stragier P., Patte J. C. 1982; Nucleotide sequence of the asd gene of Escherichia coli: absence of a typical attenuation signal.. EMBO J 1:379–384
    [Google Scholar]
  22. Hindle Z., Call is R., Dowden S., Rudd B. A. M., Baumberg S. 1994; Cloning and expression in Escherichia coli of a Streptomyces coelicolor A3(2) argCJB gene cluster.. Microbiology 140:311–320
    [Google Scholar]
  23. Kosuge T., Hoshino T. 1996 Analysis of amino acid biosynthetic genes and enzymes of Thermus thermophilus . In Thermophiles ’96, Conference Abstracts p 146 Athens, Georgia: University of Georgia;
    [Google Scholar]
  24. Koyama Y., Furukawa K. 1990; Cloning and sequence analysis of tryptophane synthetase genes of an extreme thermophile, Thermus thermophilus HB27: plasmid transfer from replica- plated Escherichia coli recombinant colonies to competent T. thermophilus cells.. J Bacteriol 172:3490–3495
    [Google Scholar]
  25. Kreutzer R., Kruft V., Bobkova E., Lavrik O. I., Sprinzl M. 1992; Structure of the phenylalanyl-tRNA synthetase genes from Thermus thermophilus HB8 and their expression in Escherichia coli . Nucleic Acids Res 20:4173–4178
    [Google Scholar]
  26. Lauer G., Rudd E. A., McKay D. L., Ally A., Ally D., Backman K. C. 1991; Cloning, nucleotide sequence, and engineered expression of Thermus thermophilus DNA ligase, a homolog of E. coli DNA ligase.. J Bacteriol 173:5047–5053
    [Google Scholar]
  27. Liang Z. 1997 Physiology and molecular biology of enzymatic carbamoylation in marine psychrophilic bacteria PhD thesis Vrije Universiteit Brussel;
    [Google Scholar]
  28. Liang Z., Demarez M., Legrain C., Baetens M., Glansdorff N., RUger H. J., Tan T. L. 1996; Ornithine carbamoyltransferase from obligate psychrophilic bacteria.. Arch Physiol Biochem 104:B15
    [Google Scholar]
  29. Liu Y., Van Heeswijck R., Hoj P., Hoogenraad N. 1995; Purification and characterization of OAT from Saccharomyces cerevisae . Eur J Biochem 228:291–296
    [Google Scholar]
  30. Ludovice M., Martin J. F., Carrachas P., Liras P. 1992; Characterization of the Streptomyces clavuligerus argC gene encoding N-acetylglutamyl-phosphate reductase: expression in Streptomyces lividans and effect on clavulanic acid production.. J Bacteriol 174:4606–4613
    [Google Scholar]
  31. Martin P. R., Mulks M. H. 1992; Molecular characterization of the argJ mutation in Neisseria gonorrhoeae strains with requirements for arginine, hypoxanthine, and uracil.. Infect Immun 60:970–975
    [Google Scholar]
  32. Matsumoto H., Hosogaya S., Suzuki K., Tazaki T. 1975; Arginine gene cluster of Serratia marcescens . Jpn J Microbiol 19:35–44
    [Google Scholar]
  33. Merkler D. J., Farrington G. K., Wedler F. C. 1981; Protein thermostability. Correlations between calculated macroscopic parameters and growth temperature for closely related thermophilic and mesophilic Bacilli . Int J Pept Protein Res 18:430–442
    [Google Scholar]
  34. Messing J. 1983; New M13 vectors for cloning.. Methods Enzymol 101:20–78
    [Google Scholar]
  35. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either DNA strand of double digest restriction fragments.. Gene 19:269–276
    [Google Scholar]
  36. Mountain A., Mann N. H., Munton R. N., Baumberg S. 1984; Cloning of a Bacillus subtilis restriction fragment complementing auxotrophic mutants of eight E. coli genes of arginine biosynthesis.. Mol Gen Genet 197:82–89
    [Google Scholar]
  37. Mountain A., McChesney J., Smith M. C. M., Baumberg S. 1986; G ene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli . J Bacteriol 165:1026–1028
    [Google Scholar]
  38. Mrabet N. T., Van de Broeck A., Van den Brande I. 13 other authors 1992; Arginine residues as stabilizing elements in proteins.. Biochemistry 31:2239–2253
    [Google Scholar]
  39. Nagahari K., Koshikawa T., Sakaguchi K. 1980; Cloning and expression of the leucine gene from Thermus thermophilus in Escherichia coli . Gene 10:137–145
    [Google Scholar]
  40. Nakamura Y., Gojobori T., Ikemura T. 1997; Codon usage tabulated from the international DNA sequence databases.. Nucleic Acids Res 25:244–245
    [Google Scholar]
  41. Ohama T., Yamao F., Muto A., Osowa S. 1987; Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G + C content.. J Bacteriol 169:4770–4777
    [Google Scholar]
  42. O'Reilly M., Devine K. M. 1994; Sequence and analysis of the citrulline biosynthetic operon argC-F from Bacillus subtilis . Microbiology 140:1023–1025
    [Google Scholar]
  43. Oshima T., Imahori K. 1974; Description of Thermus thermophilus (Yoshida and Oshima), comb, nov., a non- sporulating thermophilic bacterium from a Japanese spa.. Int J Syst Bacteriol 24:102–112
    [Google Scholar]
  44. Parsot C., Boyen A., Cohen G. N., Glansdorff N. 1988; Nucleotide sequence of Escherichia coli argB and argC genes: comparison of N-acetylglutamate-γ-semialdehyde dehydrogenase with homologous and analogous enzymes.. Gene 68:275–283
    [Google Scholar]
  45. Picard F. J., Dillon J. R. 1989; Cloning and organization of seven arginine biosynthetic genes from Neisseria gonorrhoeae . J Bacteriol 171:1644–1651
    [Google Scholar]
  46. Piérard A., Wiame J. M. 1964; Regulation and mutation affecting a glutamine dependent formation of carbamoyl- phosphate in Escherichia coli . Biochem Biophys Res Commun 15:76–81
    [Google Scholar]
  47. Pouwels P., Cunin R., Glansdorff N. 1974; Divergent transcription in the argECBH cluster of genes in Escherichia coli K-12.. J Mol Biol 83:421–424
    [Google Scholar]
  48. Prozesky O. W. 1968; Transductional analysis of arginineless mutants in Proteus mirabilis . J Gen Microbiol 54:127–143
    [Google Scholar]
  49. Rentier-Delrue F., Mande S. C., Moyens S., Terpstra P., Mainfroid V., Goraj K., Lion M., Hoi W. G. J., Martial J. A. 1993; Cloning and overexpression of the triose phosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences.. J Mol Biol 229:85–93
    [Google Scholar]
  50. Rossman M. G., Liljas A., Brandon C. I., Banaszak L. J. 1975 Evolutionary and structural relationships among dehydrogenases.. In The Enzymes vol 11 pp 61–102 Edited by Boyer P. New York: Academic Press;
    [Google Scholar]
  51. Sakanyan V. A., Hovsepyan A. S., Mett I. L., Kochikyan A. V., Petrosyan P. K. 1990; Molecular cloning and structural-functional analysis of the arginine biosynthesis genes of the thermophilic bacterium Bacillus stearothermophilus . Genetika 26:1915–1925
    [Google Scholar]
  52. Sakanyan V., Kochikyan A., Mett I., Legrain C., Charlier D., Piérard A., Glansdorff N. 1992; A re-examination of the pathway for ornithine biosynthesis in a thermophilic and two mesophilic Bacillus species.. J Gen Microbiol 138:125–130
    [Google Scholar]
  53. Sakanyan V., Charlier D., Legrain C., Kochikyan A., Mett I., Piérard A., Glansdorff N. 1993; Primary structure, partial purification and regulation of key enzymes of the acetyl cycle of arginine biosynthesis in Bacillus stearothermophilus: dual function of ornithine acetyltransferase.. J Gen Microbiol 139:393–402
    [Google Scholar]
  54. Sakanayan V., Petrosyan P., Lecocq M., Boyen A., Legrain C., Demarez M., Hallet J., -N. & Glansdorff N. 1996; Genes and enzymes of the acetyl cycle of arginine biosynthesis in Coryne- bacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142:99–108
    [Google Scholar]
  55. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  56. Sanderson K. E. 1970; Current linkage map of Salmonella typhimurium . Bacteriol Rev 34:176–193
    [Google Scholar]
  57. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  58. Savchenko A., Charlier D., Dion M., Weigel P., Hallet J.-N., Holtman C., Baumberg S., Glansdorff N., Sakanyan V. 1996; The arginine operon of Bacillus stearothermophilus: characterization of the control region and its interaction with the heterologous Bacillus subtilis arginine repressor.. Mol Gen Genet 252:69–78
    [Google Scholar]
  59. Scrutton N. S., Berry A., Perham R. N. 1990; Redesign of the coenzyme specificity of a dehydrogenase by protein engineering.. Nature 343:38–43
    [Google Scholar]
  60. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. 1988; λ-ZAP: a bacteriophage λ expression vector with in vivo excision properties.. Nucleic Acids Res 16:7583–7600
    [Google Scholar]
  61. Tabata K., Hoshino T. 1996; Mapping of 61 genes on the refined physical map of the chromosome of Thermus thermophilus HB27 and comparison of genome organization with that of T. thermophilus HB8.. Microbiology 142:401–410
    [Google Scholar]
  62. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w : improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice.. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  63. Van de Casteele M. 1994 The metabolic and genetic control of carbamoylation in extreme thermophilic eubacteria PhD thesis Vrije Universiteit Brussel;
    [Google Scholar]
  64. Van de Casteele M., Demarez M., Legrain C., Glansdorff N., Pé€rard A. 1990; Pathways of arginine biosynthesis in extreme thermophilic archaeo- and eubacteria.. J Gen Microbiol 136:1177–1183
    [Google Scholar]
  65. Van de Casteele M., Desmarez L., Legrain C., Chen P. G., Van Lierde K., Pigrard A., Glansdorff N. 1994; Genes encoding aspartate carbamoytransferase of Thermus aquaticus Z05 and Thermotoga maritima MSB8: modes of expression in Escherichia coli and properties of their products.. Biocatalysis 112:165–179
    [Google Scholar]
  66. Van de Casteele M., Legrain C., Desmarez L., Chen P. G., Pigrard A., Glansdorff N. 1997a; Molecular physiology of carbamoylation under extreme conditions: what can we learn from extreme thermophilic organisms?. Comp Biochem Physiol (in press)
    [Google Scholar]
  67. Van de Casteele M., Chen P., Roovers M., Legrain C., Glansdorff N. 1997b; Structure and expression of a pyrimidine gene cluster from the extreme thermophile Thermus ZO5.. J Bacteriol 11:3470–3481
    [Google Scholar]
  68. Vellanoweth R. L., Rabinowitz J. C. 1992; The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo.. Mol Microbiol 6:1105–1114
    [Google Scholar]
  69. Vyas S., Maas W. 1963; Feed-back inhibition of acetyl- glutamate synthase by arginine in Escherichia coli . Arch Biochem Biophys 100:542–546
    [Google Scholar]
  70. Watanabe K., Chishiro K., Kitamura K., Suzuki Y. 1991; Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo- 1,6-glucosidase from Bacillus thermoglucosidasius KP1006.. J Biol Chem 266:24287–24294
    [Google Scholar]
  71. Wierenga R. K., Terpstra P., Hoi W. G. J. 1985; Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint.. J Mol Biol 187:101–107
    [Google Scholar]
  72. Williams R. A. D. 1992 The genus Thermus . In Thermophilic Bacteria pp 51–62 Edited by Kristjansson J. K. Boca Raton, FL: CRC Press;
    [Google Scholar]
  73. Woese C. R. 1987; Bacterial evolution.. Microbiol Rev 51:221–271
    [Google Scholar]
  74. Zalacain M., Gonzalez A., Guerrero M. C., Mattaliano R. J., Malpartida F., Jimenez A. 1986; Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygro- scopicus . Nucleic Acids Res 14:1565–1581
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-2-479
Loading
/content/journal/micro/10.1099/00221287-144-2-479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error