Anionogenic groups and surface sialoglycoconjugate structures of yeast forms of the human pathogen Paracoccidioides brasiliensis Free

Abstract

The surface anionogenic groups and sialoglycoconjugate structures of yeast forms were analysed by cell microelectrophoresis, binding assays with lectins and viral particles, ultrastructural cytochemistry, enzymic digestion and flow cytofluorimetry. yeast forms, particularly the budding primordia, reacted strongly with cationized ferritin. Binding assays showed that the reaction with sialic-acid-specific lectin (LFA) was distributed over the entire cell wall. Treatment of yeast forms with neuraminidase significantly reduced their negative surface charge and LFA labelling, which suggests that sialic acid residues are major anionogenic groups exposed on the surface. Furthermore, after neuraminidase treatment, labelling with (peanut) agglutinin increased due to unmasking of subterminal βD-galactopyranosyl residues. The sialic acid linkages to galactose are α2,6 and α2,3 as assessed, respectively, by fungal attachment to M1/5 and M1/5 HS8 strains of influenza A virus and binding of and agglutinins. The α2,6 linkage clearly predominated in both experiments. Flow cytofluorimetry analysis revealed the heterogenicity of P. brasiliensis yeast cell populations, which comprised young and mature budding yeasts. Both express binding sites to LFA and agglutinin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-2-309
1998-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/2/mic-144-2-309.html?itemId=/content/journal/micro/10.1099/00221287-144-2-309&mimeType=html&fmt=ahah

References

  1. Alviano C. S., Pereira M. E. A., De Souza W., Oda L. M., Travassos L. R. 1982; Sialic acids are surface components of Sporothrix scbenckii yeast forms.. FEMS Microbiol Lett 15:223–227
    [Google Scholar]
  2. Benchimol M., De Souza W., Travassos L R. 1979; Distribution of anionic groups at the cell surface of different Sporothrix scbenckii cell types.. Infect Immun 24:912–919
    [Google Scholar]
  3. Burry R. W., Wood J. G. 1979; Contributions of lipids and proteins to the surface charge of membranes.. J Cell Biol 82:726–741
    [Google Scholar]
  4. Carroll S. M., Higa H. H., Cahan L. D., Paulson J. S. 1981 Different sialyloligosaccharide receptor determinants of antigenically related influenza virus hemagglutinins.. In Genetic Variation in Influenza Viruses pp 415–421 Edited by Nayak D., Fox C. F. New York: Academic Press;
    [Google Scholar]
  5. Danon D., Goldstein L., Marikovosky I., Skutelsky E. 1972; Use of cationized ferritin as label of negative charges on cell surfaces.. J Ultrastruct Res 38:500–510
    [Google Scholar]
  6. Eylar E. H., Madoff M., Brody O. V., Ondey J. L. 1962; Thecontribution of sialic acid to the surface charge of the erythrocyte.. J Biol Chem 237:1992–2000
    [Google Scholar]
  7. Figueiredo A. M. S., Ferreira-Carvalho B. T., Alviano C. S., Angluster J., Silva-Filho F. C. S., Benchetrit L. C. 1995; Changes in the surface carbohydrate composition and exposure of anionic groups caused by β-lactam antibiotics in streptococci.. J Antimicrob Chemotber 36:1031–1036
    [Google Scholar]
  8. Gilardi G. L., Laffer N. C. 1962; Nutritional studies on the yeast phase of Blastomyces dermatitidis and B. brasiliensis . J Bacteriol 83:219–227
    [Google Scholar]
  9. Hamilton A. J., ieavons L., Hobby P., and Hay R. J. 1992; A 34to 38 kilodalton Cryptococcus neoformans glycoprotein produced as an exoantigen bearing a glycosylated species-specific epitope.. Infect Immun 60:143–149
    [Google Scholar]
  10. Hesketh L. M., Wyatt J. E., Handley P. S. 1987; Effect of protease on cell surface structure hydrophobicity and adhesion of tufted strains of Streptococcus sanguis biotypes I and II.. Microbios 50:131–145
    [Google Scholar]
  11. James A. M. 1979; Molecular aspects of biological surfaces.. Chem Soc Rev 8:389–418
    [Google Scholar]
  12. Lampio A. 1988; Exposure of major glycolipids in human Pk and p erythrocytes.. Glycoconj J 5:513–520
    [Google Scholar]
  13. Mehereshi J. N. 1972; Molecular aspects of the mammalian cell surface.. Prog Biopbys Mol Biol 25:1–70
    [Google Scholar]
  14. Oda L. M., Kubelka C. F., Alviano C. S., Travassos L. R. 1983; Ingestion of yeast forms of Sporotbrix scbenckii by mouse peritonial macrophages.. Infect Immun 39:497–504
    [Google Scholar]
  15. van Oss C. J., Absolom D. R., Neumann A. W. 1984 Surface forces in phagocytosis.. In Reticuloendothelial System pp 3–35 Edited by Reichard S. M., Filkins J. P. New York: Plenum;
    [Google Scholar]
  16. van Oss C. J., Good R. J., Chandhury M. K. 1986; Surface thermodynamics of bacterial adhesion.. J Coll Interf Sci 111:378–381
    [Google Scholar]
  17. Powell L. D., Varki A. 1996 Sialidases.. In Current Protocols in Molecular Biology Unit 17–12 Edited by Ausubel F. M. and others New York: Wiley;
    [Google Scholar]
  18. Previato J. O., Andrade A. F. B., Pessolani M. C. V., Mendonça- Previato L. 1985; Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route.. Mol Biocbem Parasitol 16:85–96
    [Google Scholar]
  19. Rogers G. N., Pritchett T. J., Lane J. L., Paulson J. C. 1983; Differential sensitivity of human, avian and equine influenza viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants.. Virology 131:394–408
    [Google Scholar]
  20. Schauer R. 1982; Chemistry, metabolism and biological functions of sialic acids.. Adv Carbohydr Chem Biochem 40:131–234
    [Google Scholar]
  21. Schauer R., Reuter G., Mühlpford H., Andrade A. F. B., Pereira M. E. A. 1983; The occurrence of N-acetyl and N- glycolyl-neuraminic acids in Trypanosoma cruzi . Hoppe-Seyler’s Z Physiol Chem 364:1053–1057
    [Google Scholar]
  22. Schenkman S., Ferguson M. A. J., Heise N., Cardoso de Almeida M. A., Mortara R. A., Yoshida N. 1993; Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acids in a reaction catalysed by trans-sialidase from metacyclic forms of Trypanosoma cruzi . Mol Biochem Parasitol 59:293–304
    [Google Scholar]
  23. Silva-Filho F. C., Saraiva E. B., Vannier-Santos M. A., De Souza W. 1990; The surface free energy of Leishmania mexicana amazonensis.. Cell Biophys 17:137–151
    [Google Scholar]
  24. Soares R. M. A., Alviano C. S., Angluster J., Travassos L. R. 1993; Identification of sialic acids on the cell surface of hyphae and yeast forms of the human pathogen Paracoccidioides brasiliensis . FEMS Microbiol Lett 108:31–34
    [Google Scholar]
  25. Souza E. T., Silva-Filho F. C., De Souza W., Alviano C. S., Angluster J., Travassos L. L. 1986; Identification of sialic acids on the cell surface of hyphae and conidia of the human pathogen Fonsecaea pedrosoi . J Med Vet My col 24:145–153
    [Google Scholar]
  26. Varki A. 1997; Sialic acids as ligands in recognition phenomena.. FASEB J 11:248–255
    [Google Scholar]
  27. Weiss L. 1969; The cell periphery.. Int Rev Cytol 26:63–105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-2-309
Loading
/content/journal/micro/10.1099/00221287-144-2-309
Loading

Data & Media loading...

Most cited Most Cited RSS feed