1887

Abstract

Summary: Three new genes encoding the serine-aspartate (SD) repeat-containing proteins SdrC, SdrD and SdrE were found in strain Newman. The SD repeats had earlier been found in the fibrinogen-binding clumping factors ClfA and ClfB. The and genes encode high-molecular-mass fibrinogen-binding proteins that are anchored to the cell surface of . The genes now reported are closely linked and tandemly arrayed. The putative Sdr proteins have both organizational and sequence similarity to ClfA and ClfB. At the N-terminus, putative secretory signal sequences precede approximately 500 residue A regions. The A regions of the Sdr and Clf proteins exhibit only 20–30% residue identity when aligned with any other member of the family. The only conserved sequence is the consensus motif TYTFTDYVD. The Sdr proteins differ from ClfA and ClfB by having two to five additional 110–113 residue repeated sequences (-motifs) located between region A and the -region. Each -motif contains a consensus Ca-binding -hand loop normally found in eukaryotic proteins. The structural integrity of recombinant Sdr(B1-B5) protein comprising the five -repeats of SdrD was shown by bisANS fluorescence analysis to be Ca-dependent, suggesting that the -hands are functional. When Cawas removed the structure collapsed to an unfolded conformation. The original structure was restored by addition of Ca. The C-terminal -domains of the Sdr proteins contain 132–170 residues. These are followed by conserved wall-anchoring regions characteristic of many surface proteins of Gram-positive bacteria. The locus was present in all 31 strains from human and bovine sources tested by Southern hybridization, although in a few strains it contained two rather than three genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-12-3387
1998-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/12/mic-144-12-3387.html?itemId=/content/journal/micro/10.1099/00221287-144-12-3387&mimeType=html&fmt=ahah

References

  1. Altieri D.C., Plescia J., Plow E.F. 1993; The structural motif glycine 190-valine 202 of the fibrinogen Ɣ-chain interacts with CDllb/CD18 integrin (αMβ2, Mac-1) and promotes leukocyte adhesion. . J Biol Chem 268:1847–1853
    [Google Scholar]
  2. Anderson J.C. 1976; The contribution of the mouse mastitis model to our understanding of staphylococcal infection.. Zentbl Bakteriol Parasitenkd lnfektionskr Hyg Abt 1 Orig Reike A 5 Suppl. 783–790
    [Google Scholar]
  3. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Smith J.A., Seidman J.G., Struhl K. 1987 Current Protocols in Molecular Biology. New York: Wiley;
    [Google Scholar]
  4. de Azevedo J.C.S., Foster T.J., Hartigan P.J., Arbuthnott J.P., O’Reilly M., Kreiswirth B.N., Novick R.P. 1985; Expression of the cloned toxic shock syndrome toxin 1 gene (tst) in vivo with a rabbit uterine model.. Infect Immun 50:304–309
    [Google Scholar]
  5. Brown E.M., Vassilev P.M., Hebert S.C. 1995; Calcium ions as extracellular messengers.. Cell 83:679–682
    [Google Scholar]
  6. Caparon M.G., Hanski E. 1996; Protein F2, a novel fibronectin- binding protein from Streptococcus pyogenes possesses two binding domains. . Mol Microbiol 21:373–384
    [Google Scholar]
  7. Clyne M., de Azevedo J., Carlson E., Arbuthnott J.P. 1988; Production of gamma-hemolysin and lack of production of alpha- hemolysin by strains of Staphylococcus aureus associated with toxin shock syndrome.. J Clin Microbiol 26:535–539
    [Google Scholar]
  8. Coleman D.C., Pomeroy H., Estridge J.K., Keane C.T., Cafferkey M.T., Hone R., Foster T.J. 1985; Susceptibility to antimicrobial agents and analysis of plasmids in gentamicin- and methicillin-resistant Staphylococcus aureus from Dublin hospitals.. J Med Microbiol 20:157–167
    [Google Scholar]
  9. Duthie E.S., Lorenz L.L. 1952; Staphylococcal coagulase: mode of action and antigenicity. . J Gen Microbiol 6:95–107
    [Google Scholar]
  10. Foster T.J., Hartford O., O’Connell D. 1997; Host-pathogen protein-protein interactions in Staphylococcus. . In Molecular Aspects of Host-Pathogen Interactions Society for General Microbiology Symposium no. 55 pp. 67–94 McCrea M.A., Saunders J.R., Smyth C.J., Stow N.D. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  11. Gibbons D.L., Horowitz P.M. 1995; Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401. . J Biol Chem 270:7335–7340
    [Google Scholar]
  12. Hartford O., François P., Vaudaux P., Foster T.J. 1997; The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface.. Mol Microbiol 25:1065–1076
    [Google Scholar]
  13. Kehoe M.A. 1994; Cell-wall-associated proteins in Grampositive bacteria.. In Bacterial Cell Wall pp. 217–261 Ghuysen J.-K., Hakenbeck R. Edited by Amsterdam: Elsevier Science;
    [Google Scholar]
  14. Kernodle D.S., Kaiser A.B. 1997; Wound infections and surgical prophylaxis.. In The Staphylococci in Human Disease pp. 355–377 Crossley K.B., Archer G.L. Edited by New York: Churchill Livingstone;
    [Google Scholar]
  15. Kloczewiak M., Timmons S., Lukas T.J., Hawiger J. 1984; Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the g chain.. Biochemistry 23:1767–1774
    [Google Scholar]
  16. Kreiswirth B.N., Löfdahl M.S., Betley M.J., O’Reilly M., Schlievert P.M., Bergdoll M.S., Novick R.P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage.. Nature 305:709–712
    [Google Scholar]
  17. Krestinger R.H. 1987; Calcium coordination and the calmodulin fold. Divergent versus convergent evolution. . Cold Spring Harbor Symp Quant Biol 52:499–510
    [Google Scholar]
  18. Lee J.O., Rieu P., Arnaout M.A., Liddington R. 1995; Crystal structure of the A-domain from the a subunit of integrin CR3 (CDIIb/CD18).. Cell 80:631–638
    [Google Scholar]
  19. Lindberg M., Sjöstrom J.E., Johansson T. 1972; Transformation of chromosomal and plasmid characters in Staphylococcus aureus.. J Bacteriol 109:844–847
    [Google Scholar]
  20. McDevitt D., Foster T.J. 1995; Variation in the size of the repeat region of the fibrinogen receptor (clumping factor) of Staphylococcus aureus strains.. Microbiology 141:937–943
    [Google Scholar]
  21. McDevitt D., François P., Vaudaux P., Foster T.J. 1994; Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus.. Mol Microbiol 11:237–248
    [Google Scholar]
  22. McDevitt D., Nanavaty T., House-Pompeo K., Bell E., Turner N., Mcintire L., Foster T.J., Höök M. 1997; Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen.. Eur J Biochem 247:416–424
    [Google Scholar]
  23. Moreillon P., Entenza J.M., Francioli P., McDevitt D., Foster T.J., François P., Vaudaux P. 1995; Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis.. Infect Immun 63:4738–4743
    [Google Scholar]
  24. Ní Eidhin D., Perkins S., François P., Vaudaux P., Höök M., Foster T.J. ClfB; Clumping factor B (ClfB), a new surface- located fibrinogen-binding adhesin of Staphylococcus aureus.. Mol Microbiol 29:245–257
    [Google Scholar]
  25. Nilsson M., Frykberg L., Flock J.-l., Pei L., Lindberg M., Guss B. 1998; A fibrinogen-binding protein of Staphylococcus epidermidis. . Infect Immun 66:2666–2673
    [Google Scholar]
  26. Novick R.P. 1967; Properties of a cryptic high frequency transducing phage in Staphylococcus aureus.. Virology 33:155–166
    [Google Scholar]
  27. O’Connell D.P., Nanavaty T., McDevitt D., Gurusiddappa S., Höök M., Foster T.J. 1998; The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has an integrin-like Ca2+-dependent inhibitory site.. J Biol Chem 273:6821–6829
    [Google Scholar]
  28. Pan B.-S., Johnson R.G. 1996; Interaction of cardiotonic thiadiazinone derivatives with cardiac troponin C.. J Biol Chem 271:817–823
    [Google Scholar]
  29. Park P.W., Roberts D.D., Grosso L.E., Parks W.C, Abrams W.R., Mecham R.P. 1991; Binding of elastin to Staphylococcus aureus. . J Biol Chem 266:23399–23406
    [Google Scholar]
  30. Patti J.M., Jönsson H., Guss B., Switalski L.M., Wiberg K., Lindberg M., Höök M. 1992; Molecular characterization and expression of a gene encoding Staphylococcus aureus collagen adhesin. . J Biol Chem 267:4766–4772
    [Google Scholar]
  31. Patti J.M., Allen B.A., McGavin M.J., Höök M. . 1994a; MSCRAMM-mediated adherence of microorganisms to host tissues.. Annu Rev Microbiol 45:585–617
    [Google Scholar]
  32. Patti J.M., Bremell T., Krajewska-Pietrasik D., Abdelnour A., Tarkowski A., Rydén C., Höök M. 1994b; The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. . Infect Immun 62:152–161
    [Google Scholar]
  33. Poston S.M., Li Saw Hee F.L. 1991; Genetic characterisation of resistance to metal ions in methicillin-resistant Staphylococcus aureus: elimination of resistance to cadmium, mercury and tetracycline with loss of methicillin resistance. . J Med Microbiol 34:193–201
    [Google Scholar]
  34. Prêcheur B., Cox J.A., Petrova T., Mispelter J, Craescu C.T. 1996; Nereis sarcoplasma Ca2+-binding protein has a highly unstructured apo state which is switched to the native state upon binding of the first Ca2+ ion.. FEBS Lett 395:89–94
    [Google Scholar]
  35. Rupp M.E. 1997; Infections of intravascular catheters and vascular devices.. In The Staphylococci in Human Disease pp. 379–399 Crossley K.B., Archer G.L. Edited by New York: Churchill Livingstone;
    [Google Scholar]
  36. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Schneewind O., Fowler A., Fault K.P. 1995; Structure of the cell wall anchor of surface proteins in Staphylococcus aureus.. Science 268:103–106
    [Google Scholar]
  38. Sherertz R.J., Carruth W.A., Hampton A.A., Byron M.P., Solomon D.D. 1993; Efficacy of antibiotic-coated catheters in preventing subcutaneous Staphylococcus aureus infection in rabbits.. J Infect Dis 167:98–106
    [Google Scholar]
  39. Signäs C., Raucci G., Jönsson K., Lindgren P.E., Anantharamaiah G.M., Höök M., Lindberg M. 1989; Nucleotide sequence of the gene for a fibionectin-binding protein from Staphylococcus aureus : use of this peptide sequence in the synthesis of biologically active peptides.. Proc Natl Acad Sci USA 86699–703
    [Google Scholar]
  40. da Silva A.C.R., Reinach F.C. 1991; Cafyium binding induces conformational changes in muscle regtlatory proteins.. Trends Biochem Sci 16:53–57
    [Google Scholar]
  41. Southern E.M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis.. J Mol Biol 98:503–517
    [Google Scholar]
  42. Tompkins D.C., Hatcher V.B., Patel D., Orr G.A., Higgins L.L., Lowy F.D. 1990; A human endothelial cell membrane protein that binds Staphylococcus aureus in vitro.. J Clin Invest 85:1248–1254
    [Google Scholar]
  43. Vanderheeren G., Hanssens I. 1994; Thermal unfolding of bovine alpha-lactalbumin.. J Biol Chem 709:7090–7094
    [Google Scholar]
  44. Vaudaux P.E., François P., Mcdevitt D., Foctor T.J., Albrecht R.M., Lew D.P., Waber M., Cooper S.L. 1995; Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts.. Infect Immun 63:585–590
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-12-3387
Loading
/content/journal/micro/10.1099/00221287-144-12-3387
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error