1887

Abstract

Summary: Streptomycin dependence can be caused by mutations in ribosomal protein S12. Mutations suppressing such streptomycin dependence have been found in ribosomal proteins S4 and S5, and in 16S rRNA. Here a new suppressor mutation localized in elongation factor Tu (EF-Tu) is described, consistent with recent models of ribosome-EF-Tu-tRNA interaction at the decoding centre. The EF-Tu mutation was obtained by genetic selection for streptomycin independence; it was identified as Ala375 → Thr, previously described as EF-TuA and known to confer a kirromycin-resistant, error-prone phenotype. Also, other streptomycin-dependent (Sm) S12 mutations could be complemented by this mutation. The streptomycin-independent (Sm) strain grows more slowly than the wild-type (wt), suggesting that not all the defects of the S12 mutation can be complemented by EF-Tu[A375T]. Moreover, this strain is more susceptible than wt to reduction in the cellular EF-Tu concentration, and disruption of led to considerable growth-rate impairment. Expression of EF-Tu from , not only of wt EF-Tu and EF-Tu[A375T] but, remarkably, also of EF-Tu[G222D], known as EF-TuB and defective in protein synthesis, equally contributed to cell growth. analysis revealed a decreased translational activity of wt EF-Tu with Sm ribosomes as compared to EF-Tu[A375T], while EF-Tu[G222D] showed no activity at all, just as with wt ribosomes. Possible mechanisms are discussed for the improved growth rate observed in such Sm strains when they include wt EF-Tu or EF-Tu[G222D].

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-12-3309
1998-12-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/12/mic-144-12-3309.html?itemId=/content/journal/micro/10.1099/00221287-144-12-3309&mimeType=html&fmt=ahah

References

  1. Allen P.N., Noller H.F. 1991; A single base substitution in 16S ribosomal RNA suppresses streptomycin dependence and increases the frequency of translational errors.. Cell 66:141–148
    [Google Scholar]
  2. Anborgh P.H, Parmeggiani A. 1991; New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu.. EMBO J 10:779–784
    [Google Scholar]
  3. Andersson D.I., Andersson S.G.E., Kurland C.G. 1986; Functional interactions between mutated forms of ribosomal proteins S4 S5 and S12.. Biochimie 68:705–713
    [Google Scholar]
  4. Bilgin N., Ehrenberg M. 1994; Mutations in 23S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence.. J Mol Biol 235:813–824
    [Google Scholar]
  5. Bilgin N., Claesens F., Phaverk H., Ehrenberg M. 1992; Kinetic properties of Escherichia coli ribosomes with altered forms of S12.. J Mol Biol 224:1011–1027
    [Google Scholar]
  6. Birge E.A., Kurland C.G. 1969; Altered ribosomal protein in streptomycin-dependent coli.. Science 166:1282–1284
    [Google Scholar]
  7. Birge E.A., Kurland C.G. 1970; Reversion of a streptomycin- dependent strain of Escherichia coli. . Mol Gen Genet 109:356–369
    [Google Scholar]
  8. Bjare U., Gorini L. 1971; Drug dependence reversed by a ribosomal ambiguity mutation, ram, in Escherichia coli. . J Mol Biol 57:423–35
    [Google Scholar]
  9. Boon K., Vijgenboom E., Madsen L.V., Talens A., Kraal B., Bosch L. 1992; Isolation and functional analysis of histidine- tagged elongation factor Tu.. >Eur J Biochem 210:177–183
    [Google Scholar]
  10. Bosch L, Vijgenboom E., Zeef L. A. H. 1996; A revised bacterial polypeptide chain elongation cycle with a stepwise increase in restriction of unwanted ternary complexes by the ribosome.. Biochemistry 35:12647–12651
    [Google Scholar]
  11. Dean D. 1981; A plasmid cloning vector for the direct selection of strains carrying recombinant plasmids.. Gene 15:99–102
    [Google Scholar]
  12. Deusser E., Stbffler G., Wittman H. G., Apirion G. 1970; Altered S4 proteins in Escherichia coli revertants from streptomycin dependence to independence.. Mol Gen Genet 109:298–302
    [Google Scholar]
  13. Duisterwinkel F.J., de Graaf J.M, Kraal B., Bosch L. 1981; A kirromycin resistant elongation factor EF-Tu from Escherichia coli contains a threonine instead of an alanine in position 375.. FEES Lett 131:89–93
    [Google Scholar]
  14. Duisterwinkel F.J., Kraal B., de Graaf J.M., Talens A., Bosch L., Swart G.W.M., Parmeggiani A., La Cour T.F.M., Nyborg J., Clark B.F.C. 1984; Specific alterations of the EF-Tu polypeptide chain considered in the light of its three-dimensional structure.. EMBO J 3:113–120
    [Google Scholar]
  15. Ehrenberg M., Bilgin N., Scoble J. 1993; EF-Tu stochiometries in code translation.. In The Translational Apparatus: Structure, Function, Regulation, Evolution pp. 305–315 Nierhaus K. H., Franceschi F., Subramanian A.R, Erdmann V.A, Wittmann-Liebold B. . Edited by New York:: Plenum.;
    [Google Scholar]
  16. Faxén M., Kirsebom L.A., Isaksson L.A. 1988; Is efficiency of suppressor tRNAs controlled at the level of ribosomal proofreading in vivo ? . J Bacteriol 170:3756–3760
    [Google Scholar]
  17. Hughes D., Atkins J.F., Thompson S. 1987; Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough.. EMBO J 6:4235–4239
    [Google Scholar]
  18. Kudlicki W., Coffman A., Kramer G., Hardesty B. 1997; Renaturation of rhodanese by translational elongation factor (EF) Tu.. J Biol Chem 277:32206–32210
    [Google Scholar]
  19. Lodmell J.S., Dahiberg A.E. 1997; A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA.. Science 277:1262–1267
    [Google Scholar]
  20. Mesters J.R., Zeef L.A.H., Hilgenfeld R., de Graaf J.M., Kraal B., Bosch L. 1994; The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. . EMBO J 13:4877–885
    [Google Scholar]
  21. Miller D.L., Weissbach H. 1977; Factors involved in the transfer of aminoacyl-tRNA to the ribosome.. In Molecular Mechanisms of Protein Biosynthesis pp. 323–372 Weissbach H., Pestka. S. Edited by New York:: Academic Press.;
    [Google Scholar]
  22. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  23. O’Connor M., De Stasio E.A., Dahiberg A.E. 1991; Interaction between 16S ribosomal RNA and ribosomal protein S12: differential effects of paromomycin and streptomycin.. Biochimie 73:1493–1500
    [Google Scholar]
  24. Ozaki M., Mizushima S., Nomura M. 1969; Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. . Nature 222:333–339
    [Google Scholar]
  25. Petrullo L.A., Gallagher P.J., Elseviers D. 1983; The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. . Mol Gen Genet 190:289–294
    [Google Scholar]
  26. Powers T., Noller H.F. 1991; A functional pseudoknot in 16S ribosomal RNA.. EMBO J 10:2203–2214
    [Google Scholar]
  27. Ruusala T., Andersson D., Ehrenberg M., Kurland C.G. 1984; Hyper-accurate ribosomes inhibit growth.. EMBO J 3:2575–2580
    [Google Scholar]
  28. Saarma U., Remme J., Ehrenberg M., Bilgin N. 1997; An A to U transversion at position 1067 of 23S rRNA from Escherichia coli impairs EF-Tu and EF-G function.. J Mol Biol 272:327–335
    [Google Scholar]
  29. Spickler C., Brunelle M.-N., Brakier-Gringas L. 1997; Streptomycin binds to the decoding center of 16S ribosomal RNA.. J Mol Biol 273:586–599
    [Google Scholar]
  30. Stark H., Rodnina M.V., Rinke-Appel J., Brimacombe R., Wintermeyer W., van Heel M. 1997; Visualization of elongation factor Tu on the Escherichia coli ribosome.. Nature 389:403–406
    [Google Scholar]
  31. Swart G.W.M., Parmeggiani A., Kraal B., Bosch L. 1987; Effects of the mutation glycine-222 → aspartic acid on the functions of elongation factor Tu.. Biochemistry 26:2047–2054
    [Google Scholar]
  32. Talens A., Boon K., Kraal B., Bosch L. 1996; Translational activities of EF-Tu[G222D] which cannot be reconciled with the classical scheme of the polypeptide chain elongation cycle.. Biochem Biophys Res Commun 225:961–967
    [Google Scholar]
  33. Tapio S., Isaksson L.A. 1988; Antagonistic effects of mutant elongation factor Tu and ribosomal protein S12 on control of translation accuracy, suppression and cellular growth.. Biochimie 70:273–281
    [Google Scholar]
  34. Timms A.R., Bridges B.A. 1993; Double, independent mutational events in the rpsL gene of Escherichia coli: an example of hypermutability ? . Mol Microbiol 9:335–342
    [Google Scholar]
  35. Timms A.R., Steingrimsdottir H., Lehmann A.R., Bridges B.A. 1992; Mutant sequences in the rpsL gene of Escherichia coli B/r: mechanistic implications for spontaneous and ultraviolet light mutagenesis.. Mol Gen Genet 232:89–96
    [Google Scholar]
  36. Tubulekas I., Hughes D. 1993; Suppression of rpsL phenotypes by tw/^mutations reveals a unique relationship between translation elongation and growth rate.. Mol Microbiol 7:275–284
    [Google Scholar]
  37. Tubulekas I., Buckingham R.H., Hughes D. 1991; Mutant ribosomes can generate dominant kirromycin resistance.. J Bacteriol 173:3635–3643
    [Google Scholar]
  38. Van de Klundert J.A.M., van der Meide P.H., van der Putte P., Bosch L. 1978; Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu.. Proc Natl Acad Sci USA 754470–73
    [Google Scholar]
  39. Van der Meide P.H., Vijgenboom E. 1981; The effect of kirromycin on two mutant species of the elongation factor Tu.. Eur J Biochem 117:1–6
    [Google Scholar]
  40. Van der Meide P.H., Vijgenboom E., Dicke M., Bosch L. 1982; Regulation of the expression of tufA and tufB, the two genes coding for the elongation factor EE-Tu in Escherichia coli. . FEBS Lett 139:325–330
    [Google Scholar]
  41. Vijgenboom E., Bosch L. 1987; Transfer of plasmid-borne tuf mutations to the chromosome as a genetic tool for studying the functioning of EE-TuA and EF-TuB in the E. coli cell.. Biochimie 69:1021–1030
    [Google Scholar]
  42. Vijgenboom E., Bosch L. 1989; Translational frameshifts induced by mutant species of the polypeptide chain elongation factor Tu of Escherichia coli. . J Biol Chem 264:13012–13017
    [Google Scholar]
  43. Vijgenboom E., Vink T., Kraal B., Bosch L. 1985; Mutants of the elongation factor, a new class of nonsense suppressors.. EMBO J 4:1049–1052
    [Google Scholar]
  44. Vorstenbosch E., Pape T., Rodnina M.V., Kraal B., Wintermeyer W. 1996; The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.. EMBO J 15:6766–6774
    [Google Scholar]
  45. Weijland A., Parmeggiani A. 1993; Toward a model for the interaction between elongation factor Tu and the ribosome.. Science 259:1311–1314
    [Google Scholar]
  46. Zeef L.A.H., Bosch L. 1993; A technique for targeted mutagenesis of the EF-Tu chromosomal gene by M13-mediated gene replacement.. Mol Gen Genet 238:252–260
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-12-3309
Loading
/content/journal/micro/10.1099/00221287-144-12-3309
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error