SUMMARY: Soil bacteria, such as Sinorhizobium meliloti, are subject to variation in environmental conditions, including carbon- and nitrogen-deprivation. The ability of bacteria to sense changes in their environment and respond accordingly is of vital importance to their survival and persistence in the soil and rhizosphere. A derivative of Tn5 which creates transcriptional fusions to the promoterless luxAB genes was used to mutagenize 5. meliloti 1021 and 5000 insertion mutants were subsequently screened for gene fusions induced by selected environmental stresses. The isolation of 21 gene fusions induced by nitrogen-deprivation and 12 induced by carbon-deprivation is described. Cloning and partial DNA sequence analysis of the transposon-tagged loci revealed a variety of novel genes, as well as S. meliloti genes with significant similarity to known bacterial loci. In addition, nodule occupancy studies were carried out with selected TnSluxAB insertion mutants to examine the role of the tagged genes in competition.


Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error