1887

Abstract

SUMMARY: Transcription of a new catabolic operon in Bacillus subtilis, involved in the late stages of galacturonic acid utilization, has been studied. The operon consists of four genes: kdgR, encoding the putative regulator protein; kdgK, encoding 2-keto-3-deoxyg I uconate kinase; kdgA, encoding 2-keto-3-deoxyg luconate-6-phosphate aldolase; and kdg, encoding a transporter. These four genes are organized in one transcriptional unit and map at 198" of the B. subtik chromosome. Primer extension experiments and Northern blot analysis show that an active σ-dependent promoter precedes kdgR and transcription is terminated at the putative pindependent terminator downstream of kdgr. The operon is negatively regulated by the kdgR and ccpA gene products, which belong t o the Lac1 family of transcription regulators. The expression of the genes in this operon can be induced by galacturonate and strongly repressed when glucose is present in the growth medium. Knockout mutations in genes kdgR and ccpA remove, respectively, the effects of galacturonate and glucose on the transcription of this operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-11-3111
1998-11-01
2021-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/11/mic-144-11-3111.html?itemId=/content/journal/micro/10.1099/00221287-144-11-3111&mimeType=html&fmt=ahah

References

  1. Ashwell G., Wahba A.J., Hickman J. 1960; Uronic acid metabolism in bacteria. Purification and properties of uronic acid isomerase In Escherichia coli.. J Biol Chem 235:1559–1565
    [Google Scholar]
  2. Deutscher J., Reizer J., Fischer C., Galinier A., Saier M.H., Steinmetz M. 1994; Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. . J Bacteriol 176:3336–3344
    [Google Scholar]
  3. Govan J.R.W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis; mucoid Pseudomonas aeruginosa and Burk- holderia cepacia. . Microbiol Rev 60:539–574
    [Google Scholar]
  4. Helmann J. 1995; Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences; evidence for extended contact between RNA polymerase and upstream promoter DNA.. Nucleic Acids Res 23:2351–2360
    [Google Scholar]
  5. Hueck C.J., Hillen W. 1995; Catabolite repression in Bacillus subtilis; a global regulatory mechanism for the Gram-positive bacteria?. Mol Microbiol 15:395–401
    [Google Scholar]
  6. Hueck C.J., Hillen W., Saier M.H. Jr 1994; Analysis of a cis- active sequence mediating catabolite repression in Gram-positive bacteria.. Res Microbiol 145:503–518
    [Google Scholar]
  7. Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S. 1996; Regulation of pectinolysis in Erwinia chrysanthemi. . Annu Rev Microbiol 50:213–257
    [Google Scholar]
  8. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. . Nature 390:249–256
    [Google Scholar]
  9. Lapidus A., Galleron N, Sorokin A., Ehrlich S.D. 1997; Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region.. Microbiology 143:3431–3441
    [Google Scholar]
  10. Lehninger A.L., Nelson D.L., Cox M.M. 1993; Polysaccharides and proteoglycans.. In Principles of Biochemistry, 2nd. pp. 308–315 Neal V. Edited by New York; : Worth;
    [Google Scholar]
  11. Lin E.C.C. 1996; Dissimilatory pathways for sugars, polyols, and carboxylates.. In Escherichia coli and Salmonella; Cellular and Molecular Biology, 2nd. 1 pp. 307–342 Neidhardt F.C. others Edited by Washington, DC; : American Society for Microbiology.;
    [Google Scholar]
  12. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY; : Cold Spring Harbor Laboratory.;
    [Google Scholar]
  13. Nasser W., Chalet F., Robert-Baudouy J. 1990; Purification and characterization of extracellular pectate lyase from Bacillus subtilis. . Biochimie 72:689–695
    [Google Scholar]
  14. Nasser W., Condemine G., Plantier R., Anker D., Robert-Baudouy J. 1991; Inducing properties of analogs of 2-keto-3- deoxygluconate on the expression of pectinase genes of Erwinia chrysanthemi. . FEMS Microbiol Lett 65:73–78
    [Google Scholar]
  15. Nasser W., Awade A.C., Reverchon S., Robert-Baudouy J. 1993; Pectate lyase from Bacillus subtilis; molecular characterization of the gene, and properties of the cloned enzyme.. FEBS Lett 335:319–326
    [Google Scholar]
  16. Pickersgill R., Jenkins J., Harris G., Nasser W., Robert-Baudouy J. 1994; The structure of Bacillus subtilis pectate lyase in complex with calcium.. Nat Struct Biol 1:717–723
    [Google Scholar]
  17. Rivolta C., Soldo B., Lazarevic V., Joris B., Mauöl C., Karamata D. 1998; A 35·7 kb DNA fragment from the Bacillus subtilischromosome containing a putative 12·3 kb operon involved in hexuronate catabolism and a perfectly symmetrical hypotheticalcatabolite-responsive element.. Microbiology 144:877–884
    [Google Scholar]
  18. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning; a Laboratory Manual, 2nd. Cold Spring Harbor, NY; : Cold Spring Harbor Laboratory.;
    [Google Scholar]
  19. Soldo B., Lazarevic V., Margot P., Karamata D. 1993; Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168.. J Gen Microbiol 139:3185–3195
    [Google Scholar]
  20. Sorokin A., Serror P., Pujic P., Azevedo V., Ehrlich S.D. 1995; The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products.. Microbiology 141:311–319
    [Google Scholar]
  21. Sorokin A., Azevedo V., Zumstein E., Galleron N., Ehrlich S.D. 1996; Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome.. Microbiology 142:2005–2016
    [Google Scholar]
  22. Szymona M., Doudoroff M. 1958; Carbohydrate metabolism in Rhodopseudomonas spheroides. . J Gen Microbiol 22:167–183
    [Google Scholar]
  23. Weissbach A., Hurwitz J. 1959; The formation of 2-keto-3- deoxyheptonic acid in extracts of Escherichia coli B.. J Biol Chem 234:705–709
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-11-3111
Loading
/content/journal/micro/10.1099/00221287-144-11-3111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error