1887

Abstract

SUMMARY: Saccharomyces cerewisiae and the pathogen Candida albicans can be induced to undergo morphogenesis from a yeast to a filamentous form. A C. albicansgene (CaCCT8) was identified encoding a subunit of the Cct chaperonin complex, whose expression prevents filament formation in both fungi without interfering with growth of the yeast form. In 5. cerewisiae, pseudohyphal growth induced by Ra2 119va, by overproduction of Phdlp or by expression of the C. albicans EFGl gene, was blocked by CaCct8p and its N-terminally deleted derivative CaCct8-Alp; in contrast, pseudohyphal induction by othe components (Cphlp, Cdc42p) could not be suppressed, indicating that morphogenesis per se is not inhibited. CaCCT8 expression also interfered with other Ra2p va119, phenotypes, including heat sensitivity, lack of glycogen accumulation and lack of sporulation. In C. albicans, overproduction of CaCct8p effectively blocked hyphal morphogenesis induced by starvation conditions and by serum. The results suggest that the activity of a component in the Ras2p signal transduction pathway is suppressed by excess chaperonin subunits. This component may be a novel folding target for the Cct complex. In agreement with this hypothesis, disruption of one of the two CaCC7'8 alleles in C. albicans led t o defective hyphal morphogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-11-2951
1998-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/11/mic-144-11-2951.html?itemId=/content/journal/micro/10.1099/00221287-144-11-2951&mimeType=html&fmt=ahah

References

  1. Brandriss M.C. 1983; Proline utilization in Saccharomyces cerevisiae-. analysis of the cloned PUT2 gene.. Mol Cell Biol 3:1846–1856
    [Google Scholar]
  2. Cannon R.D., Jenkinson H.F., Shepherd M.G. 1992; Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C.. albicans and in Saccharomyces cerevisiae. Mol Gen Genet 235:453–457
    [Google Scholar]
  3. Christianson T.W., Sikorski R.S., Dante M., Shero J.H., Hieter P. 1992; Multifunctional yeast high-copy-number shuttle vectors.. Gene 110:119–122
    [Google Scholar]
  4. Delbrück S., Ernst J.F. 1993; Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans.. Mol Microbiol 10:859–866
    [Google Scholar]
  5. Durnez P., Pernambuco M.B., Oris E., Argüelles J.-C., Mergels-berg H., Thevelein J.M. 1994; Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP- dependent protein kinase, but not on functional Ras proteins.. Yeast 10:1049–1064
    [Google Scholar]
  6. Fonzi W.A., Irwin M.Y. 1993; Isogenic strain construction and gene mapping in Candida albicans.. Genetics 134:717–728
    [Google Scholar]
  7. Gavrias V., Andrianopoulos A., Gimeno C.J., Timberlake W.E. 1996; Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth.. Mol Microbiol 19:1255–1263
    [Google Scholar]
  8. Gietz R.D., Sugino A. 1988; New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites.. Gene 74:527–534
    [Google Scholar]
  9. Gimeno C.J., Fink G.R. 1994; Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development.. Mol Cell Biol 14:2100–2112
    [Google Scholar]
  10. Gimeno C.J., Ljungdahl P.O., Styles C.A., Fink G.R. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS.. Cell 68:1077–1090
    [Google Scholar]
  11. Gold S., Duncan G., Barrett K., Kronstad J. 1994; cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis.. Genes Dev 8:2805–2816
    [Google Scholar]
  12. Johnston M., Davis R.W. 1984; Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae.. Mol Cell Biol 4:1440–1448
    [Google Scholar]
  13. Kelly R., Miller A.M., Kurtz M.B. 1988; One-step gene disruption by cotransformation to isolate double auxotrophs in Candida albicans.. Mol Gen Genet 214:24–31
    [Google Scholar]
  14. Köhler J.R., Fink G.R. 1996; Candida albicans strains heterozygous and homozygous in mitogen-activated protein kinase signalling components have defects in hyphal development.. Proc Natl Acad Sci USA 93:13223–13228
    [Google Scholar]
  15. Kron S.J., Gow N.A.R. 1995; Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle.. Curr Opin Cell Biol 7:845–855
    [Google Scholar]
  16. Kronstad J.W. 1997; Virulence and cAMP in smuts, blasts and blights.. Trends Plant Sci 2:193–199
    [Google Scholar]
  17. Kübler E., Müsch H.-U., Rupp S., Lisanti M.P. 1997; Gpa2p, a G-protein a-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism.. J Biol Chem 272:20321–20323
    [Google Scholar]
  18. Kubota H., Hynes G., Willison K. 1995; The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol.. Em J Biochem 239:3–16
    [Google Scholar]
  19. Laloux I., Jacobs E., Dubois E. 1994; Involvement of SRE element of Tyl transposon in TECl-dependent transcriptional activation.. Nucleic Acids Res 22:999–1005
    [Google Scholar]
  20. Leberer E., Harcus D., Broadbent I.D., Clark K.L., Dignard D., Ziegelbauer K., Schmidt A., Gow N.A.R., Brown A.J.P., Thomas D.Y. 1996; Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans.. Proc Natl Acad Sci USA 93:13217–13222
    [Google Scholar]
  21. Leuker C.E., Ernst J.F. 1994; Toxicity of a heterologous leucyl-tRNA (anticodon CAG) in the pathogen Candida albicans: in vivo evidence for non-standard decoding of CUG codons.. Mol Gen Genet 245:212–217
    [Google Scholar]
  22. Leuker C.E., Sonneborn A., Delbrück S., Ernst J.F. 1997; Sequence and promoter regulation of the PCK1 gene encoding phosphoelpyruvate carboxykinase of the fungal pathogen Candida albicans.. Gene 192:235–240
    [Google Scholar]
  23. Lin P., Cardillo T.S., Richard L.M., Segal G.B., Sherman F. 1997; Analysis of mutationally altered forms of the Cct6 subunit of the chaperonin from Saccharomyces cerevisiae.. Genetics 147:1609–1633
    [Google Scholar]
  24. Liu H., Styles C.A., Fink G.R. 1993; Elements of the yeast pheromone response pathway required for filamentous growth of diploids.. Science 262:1741–1744
    [Google Scholar]
  25. Liu H., Kühler J., Fink G.R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.. Science 266:1723–1725
    [Google Scholar]
  26. Lo H.-J., Kühler J.R., Didomenico B., Loebenberg D., Caccia-puoti A., Fink G.R. 1997; Nonfilamentous C.albicans mutants are avirulent.. Cell 90:939–949
    [Google Scholar]
  27. Lorenz M.C., Heitman J. 1997; Yeast pseudohyphal growth is regulated by GPA2, a G protein a homolog.. EMBO J 16:7008–7018
    [Google Scholar]
  28. Losberger C., Ernst J.F. 1989; Sequence and transcript analysis of the C.albicans URA3 gene encoding orotidine-5’-phosphate decarboxylase.. Curr Genet 16:153–157
    [Google Scholar]
  29. MacMurray A., Shin H.-S. 1988; The antimorphic nature of the Tc allele at the mouse T locus.. Genetics 120:545–550
    [Google Scholar]
  30. Madhani H.D., Fink G.R. 1997; Combinatorial control required for the specificity of yeast MAPK signaling.. Science 275:1314–1317
    [Google Scholar]
  31. Madhani H.D., Styles C.A., Fink G.R. 1997; MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation.. Cell 91:673–684
    [Google Scholar]
  32. Miller K.Y., Wu J., Miller B.L. 1992; StuA is required for cell pattern formation in Aspergillus.. Genes Dev 6:1770–1782
    [Google Scholar]
  33. Müsch H.-U., Roberts R., Fink G.R. 1996; Ras2 signals via the Cdc42/Ste20/mitogen-activated kinase module to induce filamentous growth in Saccharomyces cerevisiae.. Proc Natl Acad Sci USA 93:5352–5356
    [Google Scholar]
  34. Niimi M. 1996; Dibutyryl cyclic AMP-enhanced germ tube formation in exponentially growing Candida albicans cells.. Fungal Genet Biol 20:79–83
    [Google Scholar]
  35. Niimi M., Niimi K., Tokunaga J., Nakayama H. 1980; Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans.. J Bacteriol 142:1010–1014
    [Google Scholar]
  36. Odds F.C. 1988 Candida and Candidosis. London: Bailliere Tindall;
    [Google Scholar]
  37. Ruis H., Schüller C. 1995; Stress signaling in yeast.. BioEssays 17:959–965
    [Google Scholar]
  38. Schmidt A., Kunz J., Hall M.N. 1996; TOR2 is required for organization of the actin cytoskeleton in yeast.. Proc Natl Acad Sci USA 93:13780–13785
    [Google Scholar]
  39. Schmidt A., Bickle M., Beck T., Hall M.N. 1997; The yeast phosphatidylinositol kinase homolog TOR2 activates RHOl and RH02 via the exchange factor ROM2.. Cell 88:531–542
    [Google Scholar]
  40. Sherman F., Fink G., Hicks J. 1986 Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab-oratoryl;
    [Google Scholar]
  41. Singh P., Ganesan K., Malathi K., Gosh D., Datta A. 1994; ACPR, a STE12 homologue from Candida albicans, is a strong inducer of pseudohyphae in Saccharomyces cerevisiae haploids and diploids.. Biochem Biophys Res Commun 205:1079–1085
    [Google Scholar]
  42. Sternlicht H., Farr G.W., Sternlicht M.L., Driscoll J.K., Willison K., Yaffe M.B. 1993; The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo.. Proc Natl Acad Sci USA 90:9422–9426
    [Google Scholar]
  43. Stoldt V., Rademacher F., Kehren V., Ernst J.F., Pearce D.A., Sherman F. 1996; The Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts.. Yeast 12:523–529
    [Google Scholar]
  44. Stoldt V.R., Sonneborn A., Leuker C., Ernst J.F. 1997; Efgl, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi.. EMBO J 16:1982–1991
    [Google Scholar]
  45. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. 1985; In yeast, RAS proteins are controlling elements of adenylate cyclase.. Cell 40:27–36
    [Google Scholar]
  46. Toda T., Cameron S., Sass P., Zoller M., Wigler M. 1987; Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase.. Cell 50:277–287
    [Google Scholar]
  47. Ursic D., Sedbrook J.C., Himmel K.L., Culbertson M.E. 1994; The essential yeast Tcpl protein affects actin and microtubules.. Mol Biol Cell 5:1065–1080
    [Google Scholar]
  48. Ward M.P., Gimeno C.J., Fink G.R., Garrett S. 1996; SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription.. Mol Cell Biol 15:6854–6863
    [Google Scholar]
  49. Yaffe M.B., Farr G.W., Miklos D., Horwich A.L., Sternlicht M.L., Sternlicht H. 1992; TCP1 complex is a molecular chaperone in tubulin biogenesis.. Nature 358:245–248
    [Google Scholar]
  50. Zahn R., Buckle A.M., Perrett S., Johnson C.M., Corrales F.J., Golbik R., Fersht A.R. 1996; Chaperone activity and structure of monomeric polypeptide binding domains of GroEL.. Proc Natl Acad Sci USA 9315024–15029
    [Google Scholar]
  51. Ziman M., O’Brien J.M., Oullette L.A., Church W.R., Johnson D.I. 1991; Mutational analysis of CDC42Sc, a Saccharomyces cerevisiae gene that encodes a putative GTP- binding protein involved in the control of cell polarity.. Mol Cell Biol 11:3537–3544
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-11-2951
Loading
/content/journal/micro/10.1099/00221287-144-11-2951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error