1887

Abstract

SUMMARY: MerR is the transcriptional regulator of the mercury-resistance (mer) operon of transposon TnSO1, acting at the mer promoter as both an activator in the presence of mercuric salts and a repressor in their absence. This paper reports a method for selection of constitutive activator mutants, which activate transcription in the absence of Hg", and the characterization of these MerRAC proteins. At least two mutations in the MerR protein were found necessary for strong mercury-independent activation, and these mutations lie in the C- terminal two-thirds of the MerR protein near the Hg"-binding cysteines. Anm triple mutation was shown t o increase activation over the corresponding double mutations. All mutant proteins caused further activation in the presence of Hg". The data support a mechanism in which a conformational change of one or both MerR subunits in the homodimer drives a distortion of DNA bound t o a helix-turn-helix structure in the N-terminal region. A mutation in this putative helix-turn-helix region severely reduced both the repressor and activator functions of MerR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-10-2855
1998-10-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/10/mic-144-10-2855.html?itemId=/content/journal/micro/10.1099/00221287-144-10-2855&mimeType=html&fmt=ahah

References

  1. Amann E., Brosius J., Ptashne M. 1983; Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli.. Gene 25:167–178
    [Google Scholar]
  2. Ansari A.Z., Chael M.L., O´Halloran T.V. 1992; Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR.. Nature 355:87–89
    [Google Scholar]
  3. Ansari A.Z., Bradner J.E., O´Halloran T.V. 1995; DNA-bend modulation in a repressor-to-activator switching mechanism.. Nature 374:371–375
    [Google Scholar]
  4. Barrineau P., Gilbert P., Jackson W.J., Jones C.S., Summers A.O., Wisdom S. 1984; The DNA sequence of the mercury-resistance operon of the IncFII plasmid NR1.. J Mol Appl Genet 2:601–619
    [Google Scholar]
  5. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding.. Anal Biocbem 72:248–254
    [Google Scholar]
  6. Brown N.L., Ford S.J., Pridmore R.D., Fritzinger D.C. 1983; Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase.. Biochemistry 22:4089–4095
    [Google Scholar]
  7. Caslake L.F., Ashraf S.I., Summers A.O. 1997; Mutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon.. J Bacteriol 179:1787–1795
    [Google Scholar]
  8. Chang A.C.Y., Cohen S. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid.. J Bacteriol 134:1141–1156
    [Google Scholar]
  9. Comess K. M., Shewchuk L. M., Ivanetich K., Wlsh C. T. 1994; Construction of a synthetic gene for the metalloregulatory protein MerR and analysis of regionally mutated proteins for transcriptional regulation.. Biochemistry 33:4175–4186
    [Google Scholar]
  10. Dodd I.B., Egan J.B. 1990; Improved detection of helix-turn-helix DNA-binding motifs in protein sequences.. Nucleic Acids Res 18:5019–5026
    [Google Scholar]
  11. Foster T.J., Brown N.L. 1985; Identification of the merR gene of R100 by using mer-lac gene and operon fusions.. J Bacteriol 163:1153–1157
    [Google Scholar]
  12. Frantz B., O’Halloran T.V. 1990; DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR.. Biochemistry 29:4747–4751
    [Google Scholar]
  13. Harley C.B., Reynolds R.P. 1987; Analysis of E. coli promoter sequences.. Nucleic Acids Res 15:2343–2361
    [Google Scholar]
  14. Helmann J.D., Ballard B.T., Walsh C.T. 1990; The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal bridged dimer.. Science 247:946–948
    [Google Scholar]
  15. Heltzel A., Lee I.W., Totis P.A., Summers A.O. 1990; Activator-dependent preinduction binding of σ-70 RNA polymerase at the metal-regulated mer promoter.. Biochemistry 29:9572–9584
    [Google Scholar]
  16. Ishihama A. 1993; Protein-protein communication within the transcription apparatus.. J Bacteriol 175:2483–2489
    [Google Scholar]
  17. Livrelli V., Lee W.K., Summers A.O. 1993; In vivo DNA- protein interactions at the divergent mercury resistance {mer) promoters. I. Metalloregulatory protein MerR mutants.. J Biol Chem 268:2623–2631
    [Google Scholar]
  18. Lund P.A., Brown N. L. 1989a; Regulation of transcription in Escherichia coli from the mer and merR promoters in the transposon Tn501.. J Mol Biol 205:343–353
    [Google Scholar]
  19. Lund P.A., Brown N. L. 1989b; Up-promoter mutations in the positively-regulated mer promoter of Tn501.. Nucleic Acids Res 17:5517–5527
    [Google Scholar]
  20. Lund P.A., Ford S.J., Brown N.L. 1986; Transcriptional regulation of the mercury-resistance genes of transposon Tn501.. J Gen Microbiol 132:465–480
    [Google Scholar]
  21. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Misra T.K., Brown N.L., Fritzinger D.C., Pridmore R.D., Barnes W.M., Haberstroh L., Silver S. 1984; Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes.. Proc Natl Acad Sci USA 81:5975–5979
    [Google Scholar]
  23. O´Halloran T., Walsh C. 1987; Metalloregulatory DNA- binding protein encoded by the merR gene: isolation and characterization.. Science 235:211–214
    [Google Scholar]
  24. O’Halloran T.V., Frantz B., Shin M.K., Ralston D.M., Wright J.G. 1989; The MerR heavy-metal receptor mediates positive activation in a topologically novel transcription complex.. Cell 56:119–129
    [Google Scholar]
  25. Park S.J., Wireman J., Summers A.O. 1992; Genetic analysis of the Tn21 mer operator-promoter.. J Bacteriol 174:2160–2171
    [Google Scholar]
  26. Parkhill J., Brown N.L. 1990; Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn50?; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR.. Nucleic Acids Res 18:5157–5162
    [Google Scholar]
  27. Parkhill J., Ansari A.Z., Wright J.G., Brown N.L., O´Halloran T. 1993; Construction and characterisation of a mercury- independent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion.. EMBO J 12:413–421
    [Google Scholar]
  28. Praszkier J., Wilson I.W., Pittard A.J. 1992; Mutations affecting translational coupling between the rep genes of an IncB miniplasmid.. J Bacteriol 174:2376–2383
    [Google Scholar]
  29. Raibaud O., Schwartz M. 1984; Positive control of transcription initiation in bacteria.. Annu Rev Genet 18:173–206
    [Google Scholar]
  30. Ross W., Park S.-J., Summers A.O. 1989; Genetic analysis of transcriptional activation and repression in the Tn2J mer operon.. J Bacteriol 171:4009–4018
    [Google Scholar]
  31. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  33. Shewchuk L. M., Helmann J. D., Ross W., Park S. J., Summers A. O., Walsh C. T. 1989a; Transcriptional switching by the MerR protein: activation and repression mutants implicate distinct DNA and mercury(II) binding domains.. Biochemistry 28:2340–2344
    [Google Scholar]
  34. Shewchuk L.M., Verdine G.L., Nash H., Walsh C.T. 1989b; Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer activates transcription.. Biochemistry 28:6140–6145
    [Google Scholar]
  35. Shewchuk L.M., Verdine G.L., Walsh C.T. 1989c; (c)Transcriptional switching by the metalloregulatory MerR protein: initial characterization of DNA and mercury (II) binding activities.. Biochemistry 28:2331–2339
    [Google Scholar]
  36. Spratt B.G., Hedge P.J., te Heesen S., Edelman A., Broome-Smith J.K. 1986; Kanamycin-resistance vectors that are analogues of plasmids pUC8 pUC9 pEMBL8 and pEMBL9.. Gene 41:337–342
    [Google Scholar]
  37. Stanssens P., Opsomer C., McKeown Y., Kramer W., Zabeau M., Fritz H.-J. 1989; Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers.. Nucleic Acids Res 17:4441–4454
    [Google Scholar]
  38. Utschig LM., Bryson J.W., O´Halloran T.V. 1995; Mercury- 199 NMR on the metal receptor site in MerR and its protein-DNA complex.. Science 286:380–385
    [Google Scholar]
  39. Wright J.G., Tsang H.-T., Penner-Hahn P., O´Halloran T.V. 1990; Coordination chemistry of the Hg-MerR metallore- gulatory protein: evidence for a novel tridentate Hg-cysteine receptor site.. J Am Chem Soc 112:2434–2435
    [Google Scholar]
  40. Yanisch-Perron C., Viera J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-10-2855
Loading
/content/journal/micro/10.1099/00221287-144-10-2855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error