1887

Abstract

SUMMARY: The availability of a meaningful molecular phylogeny for bacteria provides a context for examining the historical significance of various developments in bacterial evolution. Herein, the classical morphological descriptions of selected members of the domain Bacteria are mapped upon the genealogical ancestry deduced from comparison of small-subunit rRNA sequences. For the species examined in this study, a distinct pattern emerges which indicates that the coccus shape has arisen and accumulated independently multiple times in separate lineages and typically survived as a persistent end-state morphology. At least two other morphologies persist but have evolved only once. This study demonstrates that although bacterial morphology is not useful in defining bacterial phylogeny, it is remarkably consistent with that phylogeny once it is known. An examination of the experimental evidence available for morphogenesis as well as microbial fossil evidence corroborates these findings. It is proposed that the accumulation of persistent morphologies is a result of the biophysical properties of peptidoglycan and their genetic control, and that an evolved body-plan strategy based on peptidoglycan may have been a fate-sealing step in the evolution of Bacteria. More generally, this study illustrates that significant evolutionary insights can be obtained by examining biological and biochemical data in the context of a reliable phylogenetic structure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-10-2803
1998-10-01
2021-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/10/mic-144-10-2803.html?itemId=/content/journal/micro/10.1099/00221287-144-10-2803&mimeType=html&fmt=ahah

References

  1. Achenbach-Richter L., Gupta R., Zillig W., Woese C.R. 1988; Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacteria evolution.. Syst Appl Microbiol 9:34–39
    [Google Scholar]
  2. Balows A., Trüper G., Dworkin M., Harder W., Schleifer K.-H. 1992 The Prokaryotes, 2nd edn.. New York: Springer;
    [Google Scholar]
  3. Begg K.J., Spratt B.G., Donachie W.D. 1986; Interaction between membrane proteins PBP3 and RodA is required for normal cell shape and division in Escherichia coli. . J Bacteriol 167:1004–1008
    [Google Scholar]
  4. Begg K.J., Taskasuga A., Edwards D.H., Dear S.J., Spratt B.G., Adachi H., Ohta T., Matsuzawa H., Donachie W.D. 1990; The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide.. J Bacteriol 172:6697–6703
    [Google Scholar]
  5. Costa C.S., Anton D.N. 1993; Round-cell mutants of Salmonella typhimurium produced by transposition mutagenesis: lethality of rodA and mre mutations.. Mol Gen Genet 236:387–394
    [Google Scholar]
  6. Ebert D., Rainey P., Embley T.M., Scholz D. 1996; Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa Metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus.. Philos Trans R Soc Lond B 351:1689–1701
    [Google Scholar]
  7. Feng D.F., Cho G., Doolittle R.F. 1997; Determining divergence times with a protein clock: update and re-evaluation.. Proc Natl Acad Sci USA 9413028–13033
    [Google Scholar]
  8. Fox G.E., Stackebrandt E., Hespell R.B. 16 other authors 1980; The phylogeny of prokaryotes.. Science 209:457–463
    [Google Scholar]
  9. Gerencser M.A., Bowden G.H. 1986; Genus Rothia. . In Bergey’s Manual of Systematic Bacteriology 2 pp. 1342–1344 Edited by Sneath P. H. A. Baltimore: Williams & Wilkins;
    [Google Scholar]
  10. Giovannoni S.J., Turner S., Olsen G.J., Barnes S., Lane D.J., Pace N.R. 1988; Evolutionary relationships among cyanobacteria and green chloroplasts.. J Bacterial 170:3584–3592
    [Google Scholar]
  11. Kandler O., Hippe H. 1977; Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. . Arch Microbiol 113:57–60
    [Google Scholar]
  12. Labischinski H., Maidhof H. 1994; Bacterial peptidoglycan: overview and evolving concepts.. In Bacterial Cell Wall pp. 23–38 Edited by Ghuysen J.-M., Hakenbeck R. Amsterdam: Elsevier;
    [Google Scholar]
  13. Lutkenhaus J., Mukherjee A. 1996; Cell division.. In Escherichia coli and Salmonella typhimurium pp. 1615–1626 Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Maidak B.L., Olsen G.J., Larsen N., Overbeek R., McCaughey M.J., Woese C.R. 1997; The RDP (ribosomal database project).. Nucleic Acids Res 25:109–111
    [Google Scholar]
  15. Olsen G.J, Woese C.R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology.. J Bacteriol 176:1–6
    [Google Scholar]
  16. Park J.T. 1996; The murein sacculus.. In Escherichia coli and Salmonella typhimurium pp. 48–57 Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Pollack J.H., Neuhaus F.C. 1994; Changes in wall teichoic acid during the rod-sphere transition of Bacillus suhtilis 168.. J Bacteriol 176:7252–7259
    [Google Scholar]
  18. Schleifer J.H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications.. Bacteriol Rev 36:407–477
    [Google Scholar]
  19. Schopf J.W. 1994; Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic.. Proc Natl Acad Sci USA 916735–6742
    [Google Scholar]
  20. Sneath P.H.A. 1984; Endospore-forming Gram-positive rods and cocci.. In Bergey’s Manual of Systematic Bacteriology 2 pp. 1104–1207 Edited by Kreig N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Spratt B.G., Boyd A., Stoker N. 1980; Defective and plaqueforming lambda transducing bacteriophage carrying penicillinbinding protein-cell shape genes: genetic and physical mapping and identification of gene products from the Up-dacA-rodA-pdp- leuS region of the Escherichia coli chromosome.. J Bacteriol 143:569–581
    [Google Scholar]
  22. Stackebrandt E. 1988; Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification system of the eubacteria.. Can J Microbiol 34:552–556
    [Google Scholar]
  23. Stackebrant E., Woese C.R. 1981; Towards a phylogeny of the Actinomycetes and related organisms.. Curr Microbiol 5:197–202
    [Google Scholar]
  24. Stackebrandt E., Ludwig W., Schubert W., Klink F., Schlesner H., Roggentin T., Hirsch P. 1984; Molecular genetic evidence for early evolutionary origin of budding peptidoglycan-less eubacteria.. Nature 307:735–737
    [Google Scholar]
  25. Tamaki S., Matsuzawa H., Matsuhashi M. 1980; Cluster of mrdA and mrdB genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli. . J Bacteriol 141:52–57
    [Google Scholar]
  26. Valentine J.W., Erwin D.H., Jablonski D. 1996; Developmental evolution of metazoan body plans: the fossil evidence.. Dev Biol 173:373–381
    [Google Scholar]
  27. Woese C.R. 1987; Bacterial evolution.. Microbiol Rev 51:221–271
    [Google Scholar]
  28. Woese C.R., Blanz P., Hespell R.B., Hahn C.M. 1982; Phylogenetic relationships among various helical bacteria.. Curr Microbiol 7:119–124
    [Google Scholar]
  29. Woese C.R., Stackebrandt E., Macke T.J., Fox G.E. 1985; A phylogenetic definition of the major eubacterial taxa.. Syst Appl Microbiol 6:143–151
    [Google Scholar]
  30. Woese C.R., Kandler O., Wheelis M.L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.. Proc Natl Acad Sci USA 874576–4579
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-10-2803
Loading
/content/journal/micro/10.1099/00221287-144-10-2803
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error