1887

Abstract

SUMMARY: Transport of siderophores of the hydroxamate type across the Escherichia coli cytoplasmic membrane depends on a periplasmic binding-protein-dependent (PBT) system. This uptake system consists of the binding protein FhUD, the membrane-associated putative ATP-hydrolase FhuC and the integral membrane protein FhuB. The two halves of FhuB [FhuB(N) and FhuB(C)], both essential for transport, are similar with respect to structure and function. Regions were identified in FhuB(N) and FhuB(C) which are presumably involved in the interaction of the two FhuB halves with each other or with other components of the uptake system, or with the different substrates. To determine the topology of the membrane-embedded polypeptide chain, FhuB‘-’/?-lactamase protein fusions were analysed. The experimental data suggest that each half of the FhuB is able to fold autonomously into the lipid bilayer, which is a prerequisite for the assembly of both halves into a transport-competent formation. The hydrophobic components from PBT systems involved in the uptake of siderophores, haem and vitamin B, define a subclass of polytopic integral membrane proteins. The topology of these ‘siderophore family’ proteins differs from that of the equivalent components of other PBT systems in that each polypeptide (and each half of FhuB) consists of 10 membrane- spanning regions, with the N- and C-termini located in the cytoplasm. The conserved region at a distance of about 90 amino acids from the C-terminus, typical of all hydrophobic PBT proteins, is also oriented to the cytoplasm. However, in the siderophore family’ proteins this putative ATPase interaction loop is followed by four instead of two transmembrane spans.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-10-2759
1998-10-01
2021-04-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/10/mic-144-10-2759.html?itemId=/content/journal/micro/10.1099/00221287-144-10-2759&mimeType=html&fmt=ahah

References

  1. Adhikari P., Kirby S.D., Nowalk A.J., Veraldi K.L., Schryvers A.B., Mietzner T.A. 1996a; Biochemical characterization of a Haemophilus influenzae periplasmic iron transport system.. J Biol Chem 270:25142–25149
    [Google Scholar]
  2. Adhikari P., Berish S.A., Nowalk A.J., Veraldi K.L, Mietzner T.A. 1996b; The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron.. J Bacterial 178:2145–2149
    [Google Scholar]
  3. Ames G.F.-L. 1986; Bacterial periplasmic transport systems: structure, mechanism and evolution.. Annu Rev Biochem 55:397–425
    [Google Scholar]
  4. Angerer A., Gaisser S., Braun V. 1990; Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-protein-dependent iron transport mechanism.. J Bacterial 172:572–578
    [Google Scholar]
  5. Biegel Carson S.D., Sparling P.F. 1996; Gonococcal FrpB: a possible role in siderophore uptake.. In Proceedings of the 10th International Pathogenic Neisseria Conference pp. 566–567 Baltimore: MD;
    [Google Scholar]
  6. Böhm B., Boschert H.8i, Köster P. 1996; Conserved amino acids in the N- and C-terminal domains of integral membrane transporter FhuB define sites important for intra- and intermolecular interactions.. Mol Microbiol 20:223–232
    [Google Scholar]
  7. Boyd D., Traxler B., Beckwith J. 1993; Analysis of the topology of a membrane protein by using a minimum number of alkaline phosphatase fusions.. J Bacterial 175:553–556
    [Google Scholar]
  8. Braun V., Hantke K. 1991; Genetics of bacterial iron transport.. In Handbook of Microbial Iron Chelates pp. 107–138 Winkelmann G. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  9. Braun V., Gross R., Köister W., Zimmermann L. 1983; Plasmid and chromosomal mutants in the iron(III)-aerobactin transport system oi Escherichia coli. Use of streptonigrin for selection.. Mol Gen Genet 192:131–139
    [Google Scholar]
  10. Broome-Smith J.K., Spratt B.G. 1986; A vector for the construction of translational fusions to TEM β-lactamase and the analysis of protein export signals and membrane protein topology.. Gene 49:341–349
    [Google Scholar]
  11. Bult C.J., White O., Olsen G.J. & 37 other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii.. Science 273:1058–1073
    [Google Scholar]
  12. Chenault S.S., Earhart C.F. 1991; Organization of genes encoding membrane proteins of the Escherichia coli ferri- enterobactin permease.. Mol Microbiol 5:1405–1413
    [Google Scholar]
  13. Craik C.S., Largmann C., Fletcher T., Roczniak S., Barr P.J., Fletterick R., Rutter W.J. 1985; Redesigning trypsin: alteration of substrate specificity.. Science 228:291–297
    [Google Scholar]
  14. Dassa E., Muir S. 1993; Membrane topology of MalG, an inner membrane protein from the maltose transport system of Escherichia coli.. Mol Microbiol 7:29–38
    [Google Scholar]
  15. Davidson A.L, Laghaeian S.S., Mannering D.E. 1996; The maltose transport system of Escherichia coli displays positive cooperativity in ATP hydrolysis.. J Biol Chem 271:4858–4863
    [Google Scholar]
  16. Fecker L., Braun V. 1983; Cloning and expression of the fhu genes involved in iron (III) hydroxamate uptake by E.coli. . J Bacteriol 156:1301–1314
    [Google Scholar]
  17. FIss E.H., Yu S., Jacobs W.R. Jr 1994; Identification of genes involved in the sequestration of iron in mycobacteria: the ferric exochelin biosynthetic and uptake pathways.. Mol Microbiol 14:557–569
    [Google Scholar]
  18. Fleischmann R.D., Adams M.D., White O. & 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae.. Science 269:496–512
    [Google Scholar]
  19. Friedrich M.J., DeVeaux L.C., Kadner R.J. 1986; Nucleotide sequence of the btuCED genes involved in vitamin B12 transport in Escherichia coli and homology with components of periplasmic binding protein-dependent transport systems.. J Bacteriol 167:928–934
    [Google Scholar]
  20. Froshauer S., Green G.N., Boyd D., McGovern K., Beckwith J. 1988; Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of E. coli. . J Mol Biol 200:501–511
    [Google Scholar]
  21. Haardt M., Bremer E. 1996; Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli.. J Bacteriol 178:5370–5381
    [Google Scholar]
  22. Hanahan D. 1985 DNA Cloning: a Practical Approach 1 p. 109. Glover S.W. Edited by Oxford: IRL Press;
    [Google Scholar]
  23. von Heijne G. 1986; The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology.. EMBO J 5:3021–3025
    [Google Scholar]
  24. Higgins C.F. 1992; ABC transporters: from microorganisms to man.. Annu Rev Cell Biol 8:67–113
    [Google Scholar]
  25. Hubacek J., Glover S.W. 1970; Complementation analysis of temperature-sensitive host specificity mutations in Escherichia coli.. J Mol Biol 50:111–127
    [Google Scholar]
  26. Kaneko T., Sato S., Kotani H. 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions.. DNA Res 3:109–136
    [Google Scholar]
  27. Kerppola R.E., Ames G.F.-L. 1992; Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. Comparison with other members of the family.. J Biol Chem 267:2329–2336
    [Google Scholar]
  28. Klenk H.-P., Clayton R.A., Tomb J.F. & 48 other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus.. Nature 390:364–370
    [Google Scholar]
  29. Küster W. 1991; Iron (III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli.. Biol Metals 4:23–32
    [Google Scholar]
  30. Köster W., Böhm B. 1992; Point mutations in two conserved glycine residues within the integral membrane protein FhuB affect iron(III) hydroxamate transport.. Mol Gen Genet 232:399–407
    [Google Scholar]
  31. Köster W., Braun V. 1986; Iron hydroxamate transport of Escherichia coli: nucleotide sequence of the fhuB gene and identification of the protein.. Mol Gen Genet 204:435–442
    [Google Scholar]
  32. Köster W., Braun V. 1989; Iron hydroxamate transport into Escherichia coli K12: localization of FhuD in the periplasm and of FhuB in the cytoplasmic membrane.. Mol Gen Genet 217:435–442
    [Google Scholar]
  33. Köster W., Braun V. 1990; Iron(III) hydroxamate transport of Escherichia coli: restoration of iron supply by coexpression of the N- and C-terminal halves of the cytoplasmic membrane protein FhuB cloned on separate plasmids.. Mol Gen Genet 223:379–384
    [Google Scholar]
  34. Köster W.L., Actis L.A., Waldbeser L.S., Tolmasky M.E., Crosa J.H. 1991; Molecular characterization of the iron transport system mediated by the pJMl plasmid in Vibrio anguillarum 775.. J Biol Chem 266:23829–23833
    [Google Scholar]
  35. Kunst F., Ogasawara N., Moszer I. & 148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis.. Nature 390:249–256
    [Google Scholar]
  36. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. 1975; Electrophoretic resolution of the major outer membrane protein of Escherichia coli K-12 into four bands.. FEBS Lett 58:254–258
    [Google Scholar]
  37. McGovern K., Ehrmann M., Beckwith J. 1991; Decoding signals for membrane protein assembly using alkaline phosphatase fusions.. EMBO J 10:2773–2782
    [Google Scholar]
  38. Mahé B., Masclaux C., Rauscher L., Enard C., Expert D. 1995; Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family.. Mol Microbiol 18:33–43
    [Google Scholar]
  39. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Mourez M., Hofnung M., Dassa E. 1997; Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits.. EMBO J 16:3066–3077
    [Google Scholar]
  41. Pearce S.R., Mimmack M.L, Gileadi U., Hyde S.C., Higgins C.F. 1992; Membrane topology of the integral membrane components, OppB and OppC, of the oligopeptide permease of Salmonella typhimurium.. Mol Microbiol 6:47–57
    [Google Scholar]
  42. Quirk P.G., Guffanti A.A., Clejan S., Cheng J., Krulwich T.A. 1994; Isolation of Tn917 insertional mutants of Bacillus subtilis that are resistant to the protonophore carbonyl cyanide m- chlorophenylhydrazone.. Biochim Biophys Acta 1186:27–34
    [Google Scholar]
  43. Richardson P.T., Park S.F. 1995; Enterochelin acquisition in Campylobacter coli: characterization of components of a binding-protein-dependent transport system.. Microbiology 141:3181–3191
    [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  45. Saurin W., Köster W., Dassa E. 1994; Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral membrane proteins.. Mol Microbiol 12:993–1004
    [Google Scholar]
  46. Schultz-Hauser G., Köster W., Schwarz H., Braun V. 1992; Iron (III) hydroxamate transport in Escherichia coli K-12: FhuB-mediated membrane association of the EhuC protein and negative complementation of fhuC mutants.. J Bacteriol 174:2305–2311
    [Google Scholar]
  47. Shea C.M., Mclntosh M.A. 1991; Nucleotide sequence and genetic organization of the ferric enterobactin transport system - homology to other periplasmic binding protein-dependent systems in Escherichia coli.. Mol Microbiol 5:1415–1428
    [Google Scholar]
  48. Short J.M., Fernandez J.M., Sorge J.A., Huse W.D. 1988; ZAP: a bacteriophage expression vector with in vivo excision properties.. Nucleic Acids Res 16:7583–7600
    [Google Scholar]
  49. Stanssens P., Opsomer C., McKeown Y.M., Kramer W., Zabeau M., Fritz H.J. 1989; Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers.. Nucleic Acids Res 17:4441–4454
    [Google Scholar]
  50. Staudenmaier H., Van Hove B., Yaraghi Z., Braun V. 1989; Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic binding protein-dependent transport mechanism for iron (III) dicitrate in Escherichia coli.. J Bacteriol 171:2626–2633
    [Google Scholar]
  51. Stojiljkovic I., Hantke K. 1994; Transport of haemin across the cytoplasmic membrane through a haemin specific periplasmic binding protein-dependent transport system in Yersinia entero- colitica.. Mol Microbiol 13:719–732
    [Google Scholar]
  52. Studier F.W., Moffatt B.A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.. J Mol Biol 189:113–130
    [Google Scholar]
  53. Tabor S., Richardson C.C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.. Proc Natl Acad Sci USA 82:1074–1078
    [Google Scholar]
  54. Tomb J.-F., White O., Kerlavage A.R. & 39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori.. Nature 388:539–547
    [Google Scholar]
  55. Whitley P., Zander T., Ehrmann M., Haardt M., Bremer E., von Heijne G. 1994; Sec-independent translocation of a 100-residue periplasmic N-terminal tail in the E. coli inner membrane protein ProW.. EMBO J 13:4653–4661
    [Google Scholar]
  56. Wilken S., Schmees G., Schneider F. 1996; A putative helical domain in the MalK subunit of the ATP-binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK2) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool.. Mol Microbiol 22:655–666
    [Google Scholar]
  57. Yamane K., Kumano M., Kurita K. 1996; The 25 °–36 ° region of the Bacillus subtilis chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes.. Microbiology 142:3047–3056
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-10-2759
Loading
/content/journal/micro/10.1099/00221287-144-10-2759
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error