The two-component hybrid kinase regulator CaNIKl of Candida albicans Free

Abstract

SUMMARY: Using degenerate primers of highly conserved regions of two-component response regulators for PCR amplification, a two-component response regulator was cloned from Candida albicans that is homologous to nik-l+ of Neurospora crassa. This two-component hybrid kinase, CaNIKl, also shows features of bacterial two-component response regulators, including a putative unorthodox second histidine kinase motif at the carboxy-terminal end. CaNIKl was expressed at low levels in both the white and opaque switch phenotypes and in the bud and hyphal growth forms of C. albicans strain WO-1, but in both developmental programmes, the level of transcript was modulated (levels were higher in opaque cells and in hyphae). Partial deletion of both CaNIKl alleles, by which the histidine autokinase- and ATP-binding domains were removed, did not inhibit either high-frequency phenotypic switching or the bud-hypha transition in high salt concentrations, but in both cases the efficiency of the developmental process was reduced.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-10-2715
1998-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/10/mic-144-10-2715.html?itemId=/content/journal/micro/10.1099/00221287-144-10-2715&mimeType=html&fmt=ahah

References

  1. Alex L.A., Simon M.I. 1994; Protein histidine kinases and signal transduction in prokaryotes and eukaryotes.. Trends Genet 10:133–138
    [Google Scholar]
  2. Alex L.A., Borkovich K.A., Simon M.I. 1996; Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase.. Proc Natl Acad Set USA 93:3416–3421
    [Google Scholar]
  3. Anderson J., Cundiff L., Schnars B., Gao M.X., Mackenzie I., Soil D.R. 1989; Hypha formation in the white-opaque transition of Candida albicans.. Infect Immun 57:458–467
    [Google Scholar]
  4. Bedell G., Soil D.R. 1979; The effects of low concentration of zinc on the growth and dimorphism of Candida albicans: evidence for zinc resistant and zinc sensitive pathways for mycelium formation.. Infect Immun 26:348–354
    [Google Scholar]
  5. Boguslawski G., Polazzi J.O. 1987; Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: simlarity of the predicted polypeptide to protein kinases.. Proc Natl Acad Sci USA 84:5848–5852
    [Google Scholar]
  6. Brown A.J.P., Cormack B.P., Gow N.A.R., Kvaal C., Soll D.R., Srikantha T. 1998; Advances in molecular genetics of Candida albicans and Candida glabrata.. J Med Vet My col 36:Suppl. 1230–237
    [Google Scholar]
  7. Buffo J., Herman M.A., Soll D.R. 1984; A characterization of pH-regulated dimorphism in Candida albicans.. Mycopathologia 85:21–30
    [Google Scholar]
  8. Calera J.A., Choi G.H., Calderone R.A. 1998; Identification of a putative histidine kinase two-component phosphorelay gene (CaHKl) in Candida albicans.. Yeast 14:665–674
    [Google Scholar]
  9. Chang C., Kwok S.F., Bleecker A.B., Meyerowitz E.M. 1993; Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators.. Science 262:539–544
    [Google Scholar]
  10. Church G.M., Gilbert W. 1984; Genomic sequencing.. Proc Natl Acad Sci USA 81:1991–1995
    [Google Scholar]
  11. Dean N. 1995; Yeast glycosylation mutants are sensitive to aminoglycosides.. Proc Natl Acad Sci USA 92:1287–1291
    [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  13. Dziejman M., Mekalanos J.J. 1995; Two-component signal transduction and its role in the expression of bacterial virulence factors.. In Two-component Signal Transduction pp. 305–317 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Fassler J.S., Gray W.M., Malone C.L., Tao W., Lin H., Deschenes R.J. 1997; Activated alleles of yeast SLN1 increase Mcml-dependent reporter gene expression and diminish signaling through the Hogl osmosensing pathway.. J Biol Chem 272:13365–13371
    [Google Scholar]
  15. Fonzi W.A., Irwin M.Y. 1993; Isogenic strain construction and gene mapping in Candida albicans.. Genetics 134:717–728
    [Google Scholar]
  16. Gottesman S., Stout V. 1991; Regulation of capsular polysaccharide synthesis in Escherichia coli K12.. Mol Microbiol 5:1599–1606
    [Google Scholar]
  17. Groisman E.A., Heffran F. 1995; Regulation of Salmonella virulence by two-component regulatory systems.. In Two- component Signal Transduction pp. 319–322 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Han B., Pain A., Johnstone K. 1997; Spontaneous duplication of a 661 bp element within a two-component sensor regulator gene causes phenotypic switching in colonies of Pseudomonas tolaasi, cause of brown blotch disease of mushrooms.. Mol Microbiol 25:211–218
    [Google Scholar]
  19. Hoch J.A. 1995; Control of cellular development in sporulating bacteria by the phosphorelay two-component signal transduction system.. In Two-component Signal Transduction pp. 129–144 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Hoch J.A., Silhavy T.J. 1995 Two-component Signal Transduction. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Hrabak E.M., Willis D.K. 1992; The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators.. J Bacteriol 174:3011–3020
    [Google Scholar]
  22. Hulett F.M. 1995; Complex phosphate regulation by sequential switches in Bacillus subtilis.. In Two-component Signal Transduction pp. 289–302 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Ishige K., Nagasawa S., Tokishita S., Mizuno T. 1994; A novel device of bacterial signal transducers.. EMBO J 31:5195–5202
    [Google Scholar]
  24. Kolotila M.P., Diamond R.D. 1990; Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1.. Infect Immun 58:1174–1179
    [Google Scholar]
  25. Kozak M. 1984; Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs.. Nucleic Acids Res 12:857–871
    [Google Scholar]
  26. Lee K. L., Buckley H.R., Campbell C.C. 1975; An amino acid liquid synthetic medium for development of mycelial and yeast forms of Candida albicans.. Sabouraudia 13:148–153
    [Google Scholar]
  27. Lockhart S., Reed B., Pierson C., Soll D.R. 1996; The most frequent scenario for recurrent Candida vaginitis is strain maintenance with “substrain shuffling”: demonstrated by sequential DNA fingerprinting with probes Ca3 Cl, and CARE2.. J Clin Microbiol 34:767–777
    [Google Scholar]
  28. Loomis W.F., Shaulsky G., Wang N. 1997; Histidine kinases in signal transduction pathways of eukaryotes.. J Cell Sci 110:1141–1145
    [Google Scholar]
  29. Lupas A., Dyke M.V., Stock J. 1991; Predicting coiled coils from protein sequences.. Science 252:1161–1164
    [Google Scholar]
  30. Lussier M., White A., Sheraton J. 16 other authors 1997; Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae.. Genetics 147:435–450
    [Google Scholar]
  31. Maeda T., Wurgler-Murphy S.M., Saito H. 1994; A two- component system that regulates an osmosensing MAP kinase cascade in yeast.. Nature 369:242–245
    [Google Scholar]
  32. Morrow B., Anderson J., Wilson J., Soll D.R. 1989; Bidirectional stimulation of the white-opaque transition of Candida albicans by ultraviolet irradiation.. J Gen Microbiol 135:1201–1208
    [Google Scholar]
  33. Morrow B., Srikantha T., Soll D.R. 1992; Transcription of the gene for pepsinogen, PEP1 is regulated by white-opaque switching in Candida albicans.. Mol Cell Biol 12:2997–3005
    [Google Scholar]
  34. Muhlschlegel F.A., Fonzi W.A. 1997; PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression.. Mol Cell Biol 17:5960–5967
    [Google Scholar]
  35. Nagahashi S., Mio T., Ono N., Yamada-Okabe T., Arisawa M., Bussey H., Yamada-Okabe H. 1998; Isolation of CaSLNl and CaNIKl, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans.. Microbiology 144:425–432
    [Google Scholar]
  36. Nagasawa S., Tokishita S., Aiba H., Mizuno T. 1992; A novel sensor-regulator protein that belongs to the homologus family of signal transduction proteins involved in adaptive responses in Escherichia coli.. Mol Microbiol 6:799–807
    [Google Scholar]
  37. Nguyen M., Peacock J., Morris A., Tanner D., Nguyen M., Snydman D.R., Wagener M., Rinaldi M., Yu V. 1996; The changing face of candidemia: emergence of non -Candida albicans species and antifungal resistance.. Am J Med 100:617–623
    [Google Scholar]
  38. Odds F.C. 1988 Candida and Candidosis: a Review and Biography. London: Baillière Tindall;
    [Google Scholar]
  39. Ota I.M., Varshavsky A. 1993; A yeast protein similar to bacterial two-component regulators.. Science 262:566–569
    [Google Scholar]
  40. Parkinson J.S. 1993; Signal transduction schemes of bacteria.. Cell 73:857–871
    [Google Scholar]
  41. Parsons W.J., Ramkumar V., Stiles G.L. 1988; Isobutyl- methyl-xanthine stimulates adenylate cyclase by blocking the inhibitory regulatory protein, G1 . Mol Pharmacol 43:37–41
    [Google Scholar]
  42. Posas F., Wurgler-Murphy S.M., Maeda T., Witten E.A., Thai T.C., Saito H. 1996; Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor.. Cell 86:865–875
    [Google Scholar]
  43. Ram A.F.J., Wolters A., Ten Hoopen R., Klis F.M. 1994; A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white.. Yeast 10:1019–1030
    [Google Scholar]
  44. Rex J., Rinaldi M., Pfaller M. 1995; Resistance of Candida species to fluconazole.. Antimicrob Agents Chemother 39:1–8
    [Google Scholar]
  45. Rikkerink E.A., Magee B.B., Magee P.T. 1988; Opaque- white phenotypic transition: a programmed morphological transition in Candida albicans.. J Bacteriol 170:895–899
    [Google Scholar]
  46. Saier M.H. 1994; Bacterial sensor kinases/response regulator systems: an introduction.. Res Microbiol 145:349–355
    [Google Scholar]
  47. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Santos M.A., Keith G., Tuite M.F. 1993; Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5´-CAG-3´ (leucine) anticodon.. EMBO J 12:607–616
    [Google Scholar]
  49. Saporito I.S., Birse C.E., Sypherd P.S., Fonzi W.A. 1995; PHR1 a pH-regulated gene of Candida albicans, is required for morphogenesis.. Mol Cell Biol 15:601–613
    [Google Scholar]
  50. Schiestl R.H., Gietz R.D. 1989; High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier.. Curr Genet 16:339–346
    [Google Scholar]
  51. Schmid J., Rotman M., Reed B., Pierson C., Soll D.R. 1993; Genetic similarity of Candida albicans isolates from vaginitis patients and their partners.. J Clin Microbiol 31:39–46
    [Google Scholar]
  52. Sherman F., Fink G.F., Hicks J.B. 1986 Laboratory Course Manual for Methods in Yeast Genetics pp. 117–119 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  53. Sherwood J., Gow N.A., Gooday G.W., Gregory D.W., Marshall D. 1992; Contact sensing in Candida albicans: a possible aid to epithelial penetration.. J Med Yet Mycol 30:161–169
    [Google Scholar]
  54. Slutsky B., Buffo J., Soll D.R. 1985; High-frequency switching of colony morphology in Candida albicans.. Science 230:666–669
    [Google Scholar]
  55. Slutsky B., Staebell M., Anderson J., Risen L., Pfaller M., soll D. R. 1987; “White-opaque transition”: a second high-fre-quency switching system in Candida albicans.. J Bacteriol 169:189–197
    [Google Scholar]
  56. Sobel J.D. 1996; Candida vulvovaginitis.. Semin Dermatol 15:17–28
    [Google Scholar]
  57. Soll D.R. 1986; The regulation of cellular differentiation in dimorphic yeast Candida albicans.. Bioessays 5:5–11
    [Google Scholar]
  58. Soll D.R. 1992; High-frequency switching in Candida albicans.. Clin Microbiol Rev 5:183–203
    [Google Scholar]
  59. Soll D., Galask R., Schmid J., Hanna C., Mac K., Morrow B. 1991; Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women.. J Clin Microbiol 29:1702–1710
    [Google Scholar]
  60. Srikantha T., Soll D.R. 1993; A white-specific gene in the white-opaque switching system of Candida albicans.. Gene 131:53–60
    [Google Scholar]
  61. Uhl M.A., Miller J.F. 1996; Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay.. EMBO J 15:1028–1036
    [Google Scholar]
  62. Wang N., Shaulsky G., Escalante R., Loomis W.F. 1996; A two-component histidine kinase gene that functions in Dictyostelium development.. EMBO J 15:3890–3898
    [Google Scholar]
  63. Welch M., Oosawa K., Aizawa S., Eisenbach M. 1993; Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria.. Proc Natl Acad Sci USA 90:8787–8791
    [Google Scholar]
  64. Wey S., Mori M., Pfaller M., Woolson R., Wenzel R. 1989; Risk factors for hospital acquired candidemia. A matched case- control study.. Arch Intern Med 149:2349–2353
    [Google Scholar]
  65. White T.G, Maltby D., Agabian N. 1995; The “universalx201D; leucine codon CTG in the secreted aspartyl proteinase 1 (SAP1) gene of Candida albicans encodes a set in vivo.. J Bacteriol 177:2953–2955
    [Google Scholar]
  66. Wurgler-Murphy S.M., Saito H. 1997; Two-component signal transducers and MAPK cascades.. Trends Biochem Sci 22:172–176
    [Google Scholar]
  67. Yao V.J., Spudich J.L. 1992; Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I.. Proc Natl Acad Sci USA 89:11915–11919
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-10-2715
Loading
/content/journal/micro/10.1099/00221287-144-10-2715
Loading

Data & Media loading...

Most cited Most Cited RSS feed