1887

Abstract

Summary: It was found that low concentrations of the naturally occurring and structurally related betaines L-carnitine, crotonobetaine and γ-butyrobetaine conferred a high degree of osmotic tolerance to Kinetic analysis of L-[ C]carnitine uptake in cells grown in minimal medium revealed the presence of a high-affinity transport system with a value of 5 μM and a maximum rate of transport ( ) of 41 nmol min (mg protein). A rise in medium osmolarity moderately increased the maximum velocity [ 71 nmol min (mg protein)] of this transport system, but had little effect on its affinity. Growth and transport studies with a set of strains that carried defined mutations in the previously identified glycine betaine transport systems OpuA, OpuC and OpuD allowed the identification of the ATP-binding cassette (ABC) transport system OpuC as the only uptake route for L-carnitine in Competition experiments with crotonobetaine and γ-butyrobetaine revealed that the OpuC system also exhibited a high affinity for these trimethylammonium compounds with values of 6.4 μM. Tracer experiments with radiolabelled L-carnitine and C-NMR tracings of cell extracts demonstrated that these betaines are accumulated by in an unmodified form. In contrast, the β-substituted acylcarnitine esters acetylcarnitine and octanoylcarnitine both functioned as osmoprotectants for but were found to be accumulated as carnitine by the cells. None of these trimethylammonium compounds were used as sole carbon or nitrogen sources. The results thus characterize L-carnitine, crotonobetaine and γ-butyrobetaine as effective compatible solutes for and establish a crucial role of the ABC transport system OpuC for the supply of with a variety of osmoprotectants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-1-83
1998-01-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/1/mic-144-1-83.html?itemId=/content/journal/micro/10.1099/00221287-144-1-83&mimeType=html&fmt=ahah

References

  1. Bernard T., Pocard J. -A., Perroud B., Le Rudulier D. 1986; Variations in the response of salt-stressed Rhizobium strains to betaines. Arch Microbiol 143:359–364
    [Google Scholar]
  2. Bieber L. L. 1988; Carnitine. Annu Rev Biochem 57:261–283
    [Google Scholar]
  3. von Blohn C., Kempf B., Kappes R. M., Bremer E. 1997; Osmostress response in Bacillus subtilis-. characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol 25:175–187
    [Google Scholar]
  4. Boch J., Kempf B., Bremer E. 1994; Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176:5364–5371
    [Google Scholar]
  5. Boch J., Kempf B., Schmid R., Bremer E. 1996; Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol 178:5121–5129
    [Google Scholar]
  6. Boos W., Lucht J. M. 1996; Periplasmic binding protein- dependent ABC transporters. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 1175–1209 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Csonka L. N., Epstein W. 1996; Osmoregulation. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 1210–1223 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Eichler K., Bourgis F., Buchet A., Kleber H. -P., Mandrand- Berthelot M. -A. 1994; Molecular characterization of the cat operon necessary for carnitine metabolism in Escherichia coli . Mol Microbiol 13:775–786
    [Google Scholar]
  9. Galinski E. A., Trüper H. G. 1994; Microbial behaviour in salt- stressed ecosystems. FEMS Microbiol Rev 15:95–108
    [Google Scholar]
  10. Goldmann A., Boivin C., Fleury V., Message B., Lecoeur L., Maille M., Tepfer D. 1991; Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol Plant-Microbe Interact 4:571–578
    [Google Scholar]
  11. Gouesbet G., Jebbar M., Talibart R., Bernard T., Blanco C. 1994; Pipecolic acid is an osmoprotectant for Escherichia coli taken up by the general transporters ProU and ProP. Microbiology 140:2415–2422
    [Google Scholar]
  12. Gutierrez J. A., Csonka L N. 1995; Isolation and characterization of adenylate kinase (adk) mutations in Salmonella typhimurium which block the ability of glycine betaine to function as an osmoprotectant. J Bacteriol 177:390–400
    [Google Scholar]
  13. Harwood C. R., Archibald A. R. 1990; Growth, maintenance and general techniques. In Molecular Biological Methods for Bacillus pp 1–26 Edited by Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  14. Higgins C. F. 1992; ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113
    [Google Scholar]
  15. Jebbar M., von Blohn C., Bremer E. 1997; Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol Lett 154:325–330
    [Google Scholar]
  16. Jung H., Jung K., Kleber H. -P. 1990; l-Carnitine uptake by Escherichia coli . J Basic Microbiol 30:507–514
    [Google Scholar]
  17. Jung H., Jung K., Kleber H. -P. 1993; Synthesis of l-carnitine by microorganisms and isolated enzymes. Adv Biochem Eng Biotechnol 50:22–44
    [Google Scholar]
  18. Kappes R. M., Kempf B., Bremer E. 1996; Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178:5071–5079
    [Google Scholar]
  19. Kempf B., Bremer E. 1995; OpuA: an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis . J Biol Chem 270:16701–16713
    [Google Scholar]
  20. Kets E. P. W., de Bont J. A. M. 1997; Effect of carnitines on Lactobacillus plantarum subjected to osmotic stress. FEMS Microbiol Lett 146:205–209
    [Google Scholar]
  21. Kets E. P. W., Galinski E. A., de Bont J. A. M. 1994; Carnitine: a novel compatible solute in Lactobacillus plantarum . Arch Microbiol 162:243–248
    [Google Scholar]
  22. Kleber H. -P. 1997; Bacterial carnitine metabolism. FEMS Microbiol Lett 147:1–9
    [Google Scholar]
  23. Kleber H. -P., Aurich H. 1967; Evidence for an inducible active transport of carnitine in Pseudomonas aeruginosa . Biochem Biophys Res Commun 26:255–260
    [Google Scholar]
  24. Ko R., Smith L. T., Smith G. M. 1994; Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes . J Bacteriol 176:426–431
    [Google Scholar]
  25. Lamark T., Kaasen I., Eshoo M. W., Falkenberg P., McDougall J., Strom A. R. 1991; DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli . Mol Microbiol 5:1049–1064
    [Google Scholar]
  26. Le Rudulier D., Bernard T., Goas G., Hamelin J. 1984; Osmoregulation in Klebsiella pneumoniae: enhancement of anaerobic growth and nitrogen fixation under stress by proline betaine, y-butyrobetaine, and other related compounds. Can J Microbiol 30:299–305
    [Google Scholar]
  27. Lin Y., Hansen J. N. 1995; Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168. J Bacteriol 177:6874–6880
    [Google Scholar]
  28. Lucchesi G. I., Lisa T. A., Casale C. H., Domenech C. E. 1995; Carnitine resembles choline in the induction of cholinesterase, acid phosphatase, and phospholipase C and its action as an osmoprotectant in Pseudomonas aeruginosa . Curr Microbiol 30:55–60
    [Google Scholar]
  29. Measures J. C. 1975; Role of amino acids in osmoregulation of nonhalophilic bacteria. Nature 257:398–400
    [Google Scholar]
  30. Miller K. J., Wood J. M. 1996; Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136
    [Google Scholar]
  31. Nobile S., Deshussen J. 1986; Transport of γ-butyrobetaine in an Agrobacterium species isolated from soil. J Bacteriol 168:780–784
    [Google Scholar]
  32. Peddie B. A., Lever M., Hayman C. M., Randall K., Chambers S. T. 1994; Relationship between osmoprotection and the structure and intracellular accumulation of betaines by Escherichia coli . FEMS Microbiol Lett 120:125–132
    [Google Scholar]
  33. Peter H., Burkovski A., Kramer R. 1996; Isolation, characterization and expression of the Cory neb acterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine. J Bacteriol 178:5229–5234
    [Google Scholar]
  34. Talibart R., Jebbar M., Gouesbet G., Himdi-Kabbab S., Wriblewski H., Blanco C., Bernard T. 1994; Osmoadaptation in Rhizobia: ectoine-induced salt tolerance. J Bacteriol 176:5210–5217
    [Google Scholar]
  35. Verheul A., Rombouts F. M., Beumert R. R., Abee T. 1995; An ATP-dependent l-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection. J Bacteriol 177:3205–3212
    [Google Scholar]
  36. Whatmore A. M., Reed R. H. 1990; Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 136:2521–2526
    [Google Scholar]
  37. Whatmore A. M., Chudek J. A., Reed R. H. 1990; The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. . J Gen Microbiol 136:2527–2535
    [Google Scholar]
  38. Xavier K. B., Martins L. O., Peist R., Kossmann M., Boos W., Santos H. 1996; High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis . J Bacteriol 178:4773–4777
    [Google Scholar]
  39. Yancey P. H. 1994; Compatible and counteracting solutes. In Cellular and Molecular Physiology of Cell Volume Regulation pp 81–109 Edited by Strange K. Boca Raton, FL: CRC Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-1-83
Loading
/content/journal/micro/10.1099/00221287-144-1-83
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error