Differential expression of glucose-regulated () and heat-shock-inducible () genes during asexual development of Free

Abstract

Summary: The expression of a glucose-regulated gene () changes significantly during the vegetative life cycle of the amounts of mRNA are low in dormant conidia, increase during germination and exponential growth, decline in young aerial hyphae and reach a maximum in late (15-18 h) aerial hyphae. Heat shock (30 min at 45°C) elevated the mRNA level of this gene especially in early aerial hyphae, whereas no increase above the high constitutive amount was found after heat treatment of late aerial hyphae. The expression of the inducible gene after heat shock also varied with the state of development and showed the highest inducibility in late aerial hyphae. Surface mycelium, from which aerial hyphae emerge, showed a similar increase in the amounts of both mRNA species. A developmental mutant (), which is defective in minor constriction budding of aerial hyphae, showed lower levels of mRNA as well as of and mRNA (after heat shock) in late aerial hyphae. The mutant did not form conidia at this stage. It is concluded that the high constitutive and inducible expression of stress genes in late aerial hyphae is due to a developmental activation of their transcription or, alternatively, to a lower degradation rate of their mRNA during this stage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-1-37
1998-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/1/mic-144-1-37.html?itemId=/content/journal/micro/10.1099/00221287-144-1-37&mimeType=html&fmt=ahah

References

  1. Becker J., Craig E. 1994; Heat shock proteins as molecular chaperones. Eur J Biochem 219:11–23
    [Google Scholar]
  2. Bonato M. C., Silva A. M., Gomes S. L., Maia J. C. C., Juliani M. H. 1987; Differential expression of heat shock proteins and spontaneous synthesis of HSP70 during the life cycle of Blasto- cladiella emersonii . Eur J Biochem 163:211–220
    [Google Scholar]
  3. Fernandes M., O'Brien T., Lis J. T. 1994; Structure and regulation of heat shock gene promoters. In The Biology of Heat Shock Proteins and Molecular Chaperones pp 375–393 Edited by Morimoto R. I., Tissieres A., Georgopoulus C. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  4. Fracella F., Mohsenzadeh S., Rensing L. 1993; Purification and partial amino acid sequence of the major 70,000 Dalton heat shock protein in Neurospora crassa . Exp Mycol 17:362–367
    [Google Scholar]
  5. Fracella F., Scholle C., Kallies A., Hafker T., Schroeder T., Rensing L. 1997; Differential hsc70 expression during asexual development of Neurospora crassa . Microbiology 143:3615–3624
    [Google Scholar]
  6. Hansberg W., de Groot H., Sies H. 1992; Reactive oxygen species associated with cell differentiation in Neurospora crassa . Free Radical Biol Med 14:287–293
    [Google Scholar]
  7. Heikkila J. J. 1993; Heat shock gene expression and development. Dev Gene 14:1–5 (Part 1) and 87–91 (Part 2)
    [Google Scholar]
  8. Hightower L., Nover L. 1991 Heat Shock and Development Heidelberg: Springer;
    [Google Scholar]
  9. Horowitz N. H. 1947; Methionine synthesis in Neurospora. The isolation of cystathionine. J Biol Chem 171:255–264
    [Google Scholar]
  10. Ingolia T. D., Slater M. R., Craig E. A. 1982; Saccharomyces cerevisiae contains a complex multigene family related to the major heat shock-inducible gene of Drosophila . Mol Cell Biol 2:1388–1398
    [Google Scholar]
  11. Kapoor M., Lewis J. 1986; Alteration of the protein synthesis pattern in Neurospora crassa cells by hyperthermal and oxidative stress. Can J Microbiol 33:162–168
    [Google Scholar]
  12. Karach F., Tӧrӧk F., Tissieres A. 1981; Extensive regions of homology in front of the two HSP70 heat shock variant genes in Drosophila melanogaster . J Mol Biol 148:219–230
    [Google Scholar]
  13. Kroczek R. A., Siebert E. 1990; Optimization of Northern analysis by vacuum-blotting, RNA-transfer visualisation, and ultraviolet fixation. Anal Biochem 184:90–95
    [Google Scholar]
  14. Kurtz S., Rossi J., Petko L., Lindquist S. 1986; An ancient developmental induction: Heat-shock proteins induced in sporulation and oogenesis. Science 231:1154–1157
    [Google Scholar]
  15. Lauter F. R., Russo V. E. A. 1991; Blue light induction of conidiation-specific genes in Neurospora crassa . Nucleic Acids Res 19:6883–6886
    [Google Scholar]
  16. Matsuyama S. S., Nelson R. E., Siegel R. W. 1974; Mutations specifically blocking differentiation of macroconidia in Neurospora crassa . Dev Biol 41:278–287
    [Google Scholar]
  17. Meyer U., Schweim P., Fracelia F., Rensing L. 1995; Close correlation between heat shock response and cytotoxicity in Neurospora crassa treated with aliphatic alcohols and phenols. Appl Environ Microbiol 61:979–984
    [Google Scholar]
  18. Mori K., Sant A., Kohno K., Normington K., Gething M. -J., Sambrook J. F. 1992; A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J 11:2583–2593
    [Google Scholar]
  19. Morimoto R. I., Jurivich D. A., Kroeger P. E., Mathur S. K., Murphy S. P., Nakai A., Sarge K., Abravaya K., Sistonen L. T. 1994; Regulation of heat shock gene transcription by a family of heat shock factors. In The Biology of Heat Shock Proteins and Molecular Chaperones pp 417–455 Edited by Morimoto R. I., Tissieres A., Georgopoulus C. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Mosser D. D., Duchaine J., Massie B. 1993; The DNA- binding activity of human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 13:5427–5438
    [Google Scholar]
  21. Munro S., Pelham H. R. B. 1986; An hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300
    [Google Scholar]
  22. Nelson R. E., Selitrennikoff C. P., Siegel R. W. 1975; Cell changes in Neurospora crassa . In Cell Cycle and Cell Differentiation pp 291–310 Edited by Reinert J., Holtzer J. Berlin: Springer;
    [Google Scholar]
  23. Nover L. 1991 Heat Shock Response Boca Raton, FL: CRC Press;
    [Google Scholar]
  24. Orbach M. J., Porro E. B., Yanofsky C. 1986; Cloning and characterization of a gene for beta tubulin from a benomyl resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol 6:2452–2461
    [Google Scholar]
  25. Perkins D. D., Radford A., Newmeyer D., Bjӧrkman M. 1982; Chromosomal loci of Neurospora crassa . Microbiol Rev 46:426–569
    [Google Scholar]
  26. Plesofsky-Vig N., Brambl R. 1985a; Heat shock response of Neurospora crassa: protein synthesis and induced thermotolerance. J Bacteriol 162:1083–1091
    [Google Scholar]
  27. Plesofsky-Vig N., Brambl R. 1985b; Topical review: the heat shock response of fungi. Exp Mycol 9:187–194
    [Google Scholar]
  28. Plesofsky-Vig N., Brambl R. 1995; Disruption of the gene for hsp30, an α-crystallin-related heat shock protein of Neurospora crassa, causes defects in thermotolerance. Proc Natl Acad Sci USA 92:5032–5036
    [Google Scholar]
  29. Rensing L. 1993; Morphogenesis of periodic conidiation patterns in Neurospora crassa: Its control by circadian rhythm and daily light and temperature signals. In Oscillations and Morphogenesis pp 327–341 Edited by Rensing L. New York: Marcel Dekker;
    [Google Scholar]
  30. Roberts A. N., Yanofsky C. 1989; Genes expressed during conidiation in Neurospora crassa: Characterization of con-8 . Nucleic Acids Res 17:197–214
    [Google Scholar]
  31. Roberts A. N., Berlin V., Hager K. M., Yanofsky C. 1988; Molecular analysis of a Neurospora crassa gene expressed during conidiation. Mol Cell Biol 8:2411–2418
    [Google Scholar]
  32. Rose M. D., Misra L. M., Vogel J. P. 1989; KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57:1211–1221
    [Google Scholar]
  33. Sachs M. S., Yanofsky C. 1991; Developmental analysis of mRNA levels for genes involved in conidiation and amino acid biosynthesis in Neurospora crassa . Dev Biol 148:117–128
    [Google Scholar]
  34. Sargent M. L., Woodward D. O. 1969; Genetic determinants of circadian rhythmicity in Neurospora . J Bacteriol 97:861–866
    [Google Scholar]
  35. Springer M. L., Yanofsky C. 1989; A morphological and genetic analysis of conidiospore development in Neurospora crassa . Genes Dev 3:559–571
    [Google Scholar]
  36. Tillmann J. B., Mote P. L., Walford R. L., Spindler S. R. 1995; Structure and regulation of the mouse GRP78 (BiP) promoter by glucose and calcium ionophore. Gene 158:225–229
    [Google Scholar]
  37. Vogel A. 1956; A convenient growth medium for Neurospora (medium N). Microb Genet Bull 13:42–43
    [Google Scholar]
  38. Watowich S. S., Morimoto R. I. 1988; Complex regulation of heat shock- and glucose-responsive genes in human cells. Mol Cell Biol 8:393–405
    [Google Scholar]
  39. Werner-Washburne M., Becker J., Smithers J. K., Craig E. A. 1989; Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol 171:2680–2688
    [Google Scholar]
  40. White B. T., Yanofsky Ch. 1993; Structural characterization and expression analysis of the Neurospora conidiation gene con-6 . Dev Biol 160:254–264
    [Google Scholar]
  41. Zoeger D., Scholle C., Schrbder-Lorenz A., Techel D., Rensing L. 1992; Some starvation-induced proteins in Neurospora crassa are related to glucose-regulated proteins. Exp Mycol 16:138–145
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-1-37
Loading
/content/journal/micro/10.1099/00221287-144-1-37
Loading

Data & Media loading...

Most cited Most Cited RSS feed