1887

Abstract

Summary: Strain ATCC 39006 of makes the same carbapenem, (5)-carbapen-2-em-3-carboxylic acid (Car), as the strain GS101. Unlike , where the onset of production occurs in the late-exponential phase of growth in response to the accumulation of the small diffusible pheromone -(3-oxohexanoyl)-L-homoserine lactone (OHHL), in carbapenem is produced throughout the growth phase and does not appear to involve any diffusible pheromone molecule. Two cosmids capable of restoring antibiotic production in group I carbapenem mutants were isolated from an gene library. These cosmids were shown to contain a homologue of the gene, encoding a CarR protein with homology to the LuxR family of transcriptional regulators. The was subcloned and shown to be capable of complementing , in the absence of OHHL, an double mutant, releasing the heterologous host from pheromone dependence for carbapenem production. The apparent OHHL-independence of the CarR explains the constitutive nature of carbapenem production in this strain of

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-1-201
1998-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/1/mic-144-1-201.html?itemId=/content/journal/micro/10.1099/00221287-144-1-201&mimeType=html&fmt=ahah

References

  1. Adar Y. Y., Simaan M., Ulitzur S. 1992; Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by the HtpR through the GroESL proteins. J Bacteriol 174:7138–7143
    [Google Scholar]
  2. Azakami H., Sugino H., Iwata N., Yamashita M., Murooka Y. 1993; moaR, a gene that encodes a positive regulator of the monoamine regulon in Klebsiella aerogenes. . J Bacteriol 175:6287–6292
    [Google Scholar]
  3. Bainton N. J. ten others 1992a; A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. . Gene 116:87–91
    [Google Scholar]
  4. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P., G, Stewart G. S. A. B., Williams P. 1992b; N-(3-Oxohex-anoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. . Biocbem J 288:997–1004
    [Google Scholar]
  5. Bankier A. T., Weston K. M., Barrell B. G. 1986 Random Cloning and Sequencing by the M13/Dideoxynucleotide Chain Termination Method Cambridge: MRC Laboratory of Molecular Biology;
    [Google Scholar]
  6. Beck von Bodman S., Farrand S. K. 1995; Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 177:5000–5008
    [Google Scholar]
  7. Bycroft B. W., Maslen, G, Box S. J., Brown A., Tyler J. W. 1988; The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)-carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp. J Antibiot 41:1231–1242
    [Google Scholar]
  8. Choi S. H., Greenberg E. P. 1991; The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci USA 88:11115–11119
    [Google Scholar]
  9. Choi S. H., Greenberg E. P. 1992; Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fischeri LuxR protein. J Bacteriol 174:4064–4069
    [Google Scholar]
  10. Cubo M. T., Economou A., Murphy G., Johnston A. W. B., Downie J. A. 1992; Molecular characterisation and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. . J Bacteriol 174:4026–035
    [Google Scholar]
  11. Ellard F. M., Cabello A., Salmond G. P. C. 1989; Bacteriophage lambda-mediated transposon mutagenesis of phytopathogenic and epiphytic Erwinia species is strain dependent. Mol Gen Genet 218:491–98
    [Google Scholar]
  12. Forbes K. J., Perombelon M. C. M. 1985; Chromosomal mapping of Erwinia carotovora subspecies carotovora with the IncP plasmid R68::Mu. J Bacteriol 164:1110–1116
    [Google Scholar]
  13. Fuqua W. C., Winans S. C., Greenberg E. P. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275
    [Google Scholar]
  14. Gambello M. J., Iglewski B. H. 1991; Cloning and characterisation of the Pseudomonas aeruginosa lasR gene, a trancriptional activator of elastase expression. J Bacteriol 173:3000–3009
    [Google Scholar]
  15. Hanahan D. 1983; Studies on transformation of E. coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  16. Hopwood D. A., Chater K. F., Bibb M. J. 1995; Genetics of antibiotic production in Streptomyces coelicolor A3 (2), a model streptomycete. Biotechnology 28:65–102
    [Google Scholar]
  17. Gray K. M., Greenberg E. P. 1992; Sequencing and analysis of luxR and luxI, the luminescence regulatory genes from the squid light organ symbiont Vibrio fischeri ESI 14. Mol Marine Biol Biotechnol 1:414–419
    [Google Scholar]
  18. Imada A., Kitato K., Kintaka K., Muroi M., Asai M. 1981; Sulphacecin and isosulphazecin, novel β-lactam antibiotics of bacterial origin. Nature 289:590–591
    [Google Scholar]
  19. Jones S. 12 others 1993; The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomanas aeruginosa. . EMBO J 12:2477–2482
    [Google Scholar]
  20. Kahan F. M., Kropp H., Sundelof J. G., Birnbaum J. 1983; Theinamycin: development of imipenem-cilastatin. J Antimicrob Chemother 12:1–35
    [Google Scholar]
  21. Krebs M. P., Reznikoff W. S. 1988; Use of a Tn5 derivative that creates lacZ translational fusions to obtain a transposition mutant. Gene 63:277–285
    [Google Scholar]
  22. Kropp H., Sundelof J. G., Kahan J. S., Kahan F. M., Birnbaum J. 1980; MK0787 (N-formimidoyl thienamycin): evaluation of in vitro and in vivo activities. Antimicrob Agents Chemother 17:993–1000
    [Google Scholar]
  23. Kropp H., Gerkens, L, Sundelof J. G., Kahan F. M. 1985; Antibacterial activity of imipenem: the first thienamycin antibiotic. Rev Infect Diseases 7:389–410
    [Google Scholar]
  24. Labia R., Morand A., Guionie M. 1986; β-Lactamase stability of imipenem. J Antimicrob Chemother 18:1–8
    [Google Scholar]
  25. McGowan S. nine others 1995; Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550
    [Google Scholar]
  26. McGowan S., Sebaihia M., Porter L. E., Stewart G. S. A., B., Williams P., Bycroft B., Salmond G. P. C. 1996; Analysis of bacterial carbapenem antibiotic production genes reveals a novel β-lactam biosynthesis pathway. Mol Microbiol 22:415–426
    [Google Scholar]
  27. Messing J., Gronenborn B., Muller-Hill B., Hofschneider P. 1977; Filamentous coliphage M13 as a cloning vehicle: insertion of a Hmdll fragment of the lac regulatory region in M13 replicative form in vitro. . Proc Natl Acad Sci USA 74:3642–3646
    [Google Scholar]
  28. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Morrison D. A. 1966; Prodigiosin synthesis in mutants of Serratia marcescens. . J Bacteriol 91:1599–1603
    [Google Scholar]
  30. Mulholland V., Salmond G. P. C. 1995; Use of coliphage λ and other bacteriophages for molecular genetic analysis of Erwinia and related Gram-negative bacteria. Methods Mol Genet 6:439–154
    [Google Scholar]
  31. Oschner U. L., Koch A., Fiechter A., Reiser J. 1994; Isolation and characterisation of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa . J Bacteriol 176:2044–2054
    [Google Scholar]
  32. Parker W. L., Rathnum M. L., Wells J. S. Jr, Trejo W. H., Principe P. A., Sykes R. B. 1982; SQ 27860, a simple carbapenem produced by species of Serratia and Erwinia . J Antibiot 35:653–660
    [Google Scholar]
  33. Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H. 1993; Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130
    [Google Scholar]
  34. Pearson J. P., Gray K. M., Passador, L, Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P. 1994; Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91:197–201
    [Google Scholar]
  35. Pierson L. S., III, Keppenne V. D., Wood D. W. 1994; Phenazine antibiotic biosynthesis in Pseudomonas aeruginosa 30–84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3974
    [Google Scholar]
  36. Piper K. R., Beck von Bodman S., Farrand S. K. 1993; Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450
    [Google Scholar]
  37. Salmond G. P. C., Bycroft B., Stewart G. S. A. B., Williams P. 1995; The bacterial enigma: cracking the code of cell-cell communication. Mol Microbiol 16:615–624
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulsen A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  39. Selvaraj G., Fong Y. C., Iyer V. N. 1984; A portable DNA sequence carrying the cohesive site (cos) of bacteriophage λ and the mob (mobilization) region of the broad-host-range plasmid RK2: a module for the construction of new cosmids. Gene 32:235–241
    [Google Scholar]
  40. Sykes R. B. 12 others 1981; Monocyclic β-lactam antibiotics produced by bacteria. Nature 291:489–491
    [Google Scholar]
  41. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078
    [Google Scholar]
  42. Throup J. P., Camara M., Briggs G. S., Winson M. K., Chhabra R., Bycroft B. W., Williams P., Stewart G. S. A. B. 1995; Characterisation of the yenI/yenR locus from Yersinia entero-colitica mediating the synthesis of 2 N-acylhomoserine lactone signal molecules. Mol Microbiol 17:345–356
    [Google Scholar]
  43. Toth I. K., Perombelom M. C. M., Salmond G. P. C. 1993; Bacteriophage øKP mediated generalised transduction in Erwinia carotovora subspecies carotovora. . J Gen Microbiol 139:2705–2709
    [Google Scholar]
  44. Tsao S. W., Rudd B. A. M., He X. G., Chang C., Floss H. G. 1985; Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J Antibiotics 38:128–131
    [Google Scholar]
  45. Vollenweider H. J., Fiandt M., Rosenvold E. C., Szybalski W. 1980; Packaging of plasmid DNA containing the cohesive ends of coliphage lambda. Gene 9:171–174
    [Google Scholar]
  46. Wang X., de Boer P. A. J., Rothfield L. I. 1991; A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of E. coli . EMBO J 10:3363–3372
    [Google Scholar]
  47. White F. F., Klee H. J., Nester E. W. 1983; In vivo packaging of cosmids in transposon mediated mutagenesis. J Bacteriol 153:1075–1078
    [Google Scholar]
  48. Williamson J. M. 1986; The biosynthesis of theinomycin and related carbapenems. CRC Crit Rev Biotechnol 4:111–131
    [Google Scholar]
  49. Wilmes-Riesenberg M. R., Wanner B. L. 1992; TnphoA and TnphoAʹ elements for making and switching fusions for study of transcription, translation and cell surface localisation. J Bacteriol 174:4558–4575
    [Google Scholar]
  50. Wood D. W., Peirson L. S. III 1996; The phzI gene of Pseudomonas aureofaciens 30–84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168:49–53
    [Google Scholar]
  51. Zhang L., Murphy P. J., Kerr A., Tate M. E. 1993; Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362:446–448
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-1-201
Loading
/content/journal/micro/10.1099/00221287-144-1-201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error