1887

Abstract

Summary: Putative peptide-synthetase-encoding DNA fragments were isolated from the A3(2) chromosome using a PCR-based approach and mapped to a single ∼ 35 kb segment. In integrative transformation experiments, DNA fragments from this region disrupted production of the calcium-dependent antibiotic (CDA) and had sequences characteristic of non-ribosomal peptide synthetases, thus proving that the locus had been cloned.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-1-193
1998-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/1/mic-144-1-193.html?itemId=/content/journal/micro/10.1099/00221287-144-1-193&mimeType=html&fmt=ahah

References

  1. Bibb M. J. 1996; The regulation of antibiotic production in Streptomyces coelicolor A3 (2). Microbiology 142:1335–1344
    [Google Scholar]
  2. Borchert S., Patil S. S., Marahiel M. A. 1992; Identification of putative multifunctional peptide synthetase genes using highly conserved oligonucleotide sequences derived from known synthetases. FEMS Microbiol Lett 92:175–180
    [Google Scholar]
  3. Chater K. F., Bibb M. J. 1997; Regulation of bacterial antibiotic production. In Products of Secondary Metabolism (Biotechnology vol 7 ), pp 57–105 Edited by Rehm H. -J., Reed G. Weinheim: VCH;
    [Google Scholar]
  4. Coque J. J. R., Martin J. F., Calzada J. G., Liras P. 1991; The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organisation different from the same genes in Acremonium chrysogenum and Penicillium chryso genum. . Mol Microbiol 5:1125–1133
    [Google Scholar]
  5. de Crécy-Lagard V., Blanc V., Gil P., Naudin L., Lorenzon S., Famechon A., Bamas-Jacques N., Crouzet J., Thibaut D. 1997; Pristinamycin I biosynthesis in Streptomyces pristina-espiralis: molecular characterization of the first two structural peptide synthetase genes. J Bacteriol 179:705–713
    [Google Scholar]
  6. Evans G. A., Lewis K., Rothenberg B. E. 1989; High efficiency vectors for cosmid microcloning and genomic analysis. Gene 79:9–20
    [Google Scholar]
  7. Hopwood D. A. 1997; Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497
    [Google Scholar]
  8. Hopwood D. A., Wright H. M. 1983; CDA is a new chromosomally-determined antibiotic from Streptomyces coelicolor A3(2). J Gen Microbiol 129:3575–3579
    [Google Scholar]
  9. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  10. Hopwood D. A., Chater K. F., Bibb M. J. 1995; Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. In Genetics and Biochemistry of Antibiotic Production pp 65–102 Edited by Vining L. C., Stuttard C. Newton, MA: Butterworth-Heinemann;
    [Google Scholar]
  11. Kempter C., Kaiser D., Haag S. 8 other authors 1997; CDA: calcium-dependent peptide antibiotic from Streptomyces coelicolor A3 (2) containing unusual residues. Angew Chem Int Ed Engl 36:498–501
    [Google Scholar]
  12. Kieser H. M., Kieser T., Hopwood D. A. 1992; A combined genetic and physical map of the chromosome of Streptomyces coelicolor A3 (2). J Bacteriol 174:5496–5507
    [Google Scholar]
  13. Kleinkauf H., von Döhren H. 1996; A non-ribosomal system of peptide biosynthesis. Eur J Biochem 236:335–351
    [Google Scholar]
  14. Lakey J. H., Ptak M. 1988; Fluorescence indicates a calcium-dependent interaction between the lipopeptide antibiotic LY146032 and phospholipid membranes. Biochemistry 27:4639–4645
    [Google Scholar]
  15. Lakey J. H., Lea E. J. A., Rudd B. A. M., Wright H. M., Hopwood D. A. 1983; A new channel-forming antibiotic from Streptomyces coelicolor A3 (2) which requires calcium for its activity. J Gen Microbiol 129:3565–3573
    [Google Scholar]
  16. Lakey J. H., Maget-Dana R., Ptak M. 1988; Conformational change on calcium binding by the lipopeptide antibiotic ampho-mycin. Biochem Biophys Res Commun 150:384–390
    [Google Scholar]
  17. Lipmann F. 1980; Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. Adv Microb Physiol 21:227–266
    [Google Scholar]
  18. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of the Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68
    [Google Scholar]
  19. Paget M. S. B. 1994 Gene regulation and expression vector development in Streptomyces PhD thesis University of Manchester Institute of Science and Technology;
    [Google Scholar]
  20. Podmore S. M. 1995; Phenotypic and molecular genetic studies on the production of the calcium-dependent antibiotic of Streptomyces coelicolor A3(2). PhD thesis University of Manchester Institute of Science and Technology.;
    [Google Scholar]
  21. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 20:77–96
    [Google Scholar]
  22. Revill W. P., Bibb M. J., Hopwood D. A. 1995; Purification of a malonyltransferase from Streptomyces coelicolor A3 (2) and analysis of its genetic determinant. J Bacteriol 177:3946–3952
    [Google Scholar]
  23. Revill W. P., Bibb M. J., Hopwood D. A. 1996; Relationships between fatty acid and polyketide synthases from Streptomyces coelicolor A3 (2). Characterization of the fatty acid synthase carrier protein. J Bacteriol 178:5660–5667
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn Cold Spring Harbor, NY; Cold Spring Harbor Laboratory:
    [Google Scholar]
  25. Stachelhaus T., Marahiel M. A. 1995; Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 125:3–14
    [Google Scholar]
  26. Stachelhaus T., Schneider A., Marahiel M. A. 1995; Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72
    [Google Scholar]
  27. Stachelhaus T., Schneider A., Marahiel M. A. 1996; Engineered biosynthesis of peptide antibiotics. Biochem Pharmacol 52:177–186
    [Google Scholar]
  28. Stein T., Vater J. 1996; Amino-acid activation and polymerization at modular multienzymes in non-ribosomal peptide biosynthesis. Amino Acids 10:201–227
    [Google Scholar]
  29. Turgay K., Marahiel M. A. 1994; A general approach for identifying and cloning peptide synthetase genes. Pept Res 7:238–241
    [Google Scholar]
  30. Turgay K., Krause M., Marahiel M. A. 1992; Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 6:529–546
    [Google Scholar]
  31. Wright F., Bibb M. J. 1992; Codon usage in the G + C-rich Streptomyces genome. Gene 113:55–65
    [Google Scholar]
  32. Yu T. -W., Hopwood D. A. 1995; Ectopic expression of the Streptomyces coelicolor wbiE genes for polyketide spore pigment synthesis and their interaction with the act genes for actinorhodin biosynthesis. Microbiology 141:2779–2791
    [Google Scholar]
  33. Zuber P., Nakano M. M., Marahiel M. A. 1993; Peptide antibiotics. In Bacillus subtilis and Other Gram-Positive Bacteria pp 897–916 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-1-193
Loading
/content/journal/micro/10.1099/00221287-144-1-193
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error