1887

Abstract

Summary: Both alleles of the gene of , which encodes a protein with exoglucanase activity, were sequentially disrupted. Enzymic analysis of either cell extracts or culture supernatants of disrupted strains revealed that this gene is responsible for the major exoglucanase activity in , although residual exoglucanase activity could still be detected. null mutants showed similar growth rates in both rich and minimal liquid medium as compared to the wild-type strain, indicating that the enzyme is not essential for growth. In addition, no differences were observed between wild-type and null mutants with respect to their ability to undergo dimorphic transition. However, small but repeatable differences were found between the wild-type and the null mutant with respect to susceptibility to chitin and glucan synthesis inhibitors. Using a murine model of experimental infection, no significant differences in virulence were observed. The null strain is thus a suitable recipient for studying gene expression using the exoglucanase as a reporter gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-9-3023
1997-09-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/9/mic-143-9-3023.html?itemId=/content/journal/micro/10.1099/00221287-143-9-3023&mimeType=html&fmt=ahah

References

  1. Anaissie E. J., Karyotakis N. C., Hachem R., Dignani M. C., Rex J. H., Paetznick V. 1994; Correlation between in vitro and in vivo activity of antifungal agents against Candida species. J Infect Dis 170:384–389
    [Google Scholar]
  2. Ashwell G. 1957; Colorimentric analysis of sugars. Methods Enzymol 3:73–105
    [Google Scholar]
  3. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 1987; 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Bulawa C. E., Miller D. W., Henry L. K., Becker J. M. 1995; Attenuated virulence of chitin-deficient mutants of Candida albicans . Proc Natl Acad Sci USA 92:10570–10574
    [Google Scholar]
  6. Cannon R. D., Jenkinson H. F., Shepherd M. G. 1990; Isolation and nucleotide sequence of an autonomously replicating sequence (ARS) element functional in Candida albicans and Saccharomyces cerevisiae . Mol Gen Genet 221:210–218
    [Google Scholar]
  7. Cannon R. D., Jenkinson H. F., Shepherd M. G. 1992; Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in Candida albicans and in Saccharomyces cerevisiae . Mol Gen Genet 235:453–457
    [Google Scholar]
  8. Cenamor R., Molina M., Galdona J., Sánchez M., Nombela C. 1987; Production and secretion of Saccharomyces cerevisiae β-glucanases: differences between protoplast and periplasmic enzymes. J Gen Microbiol 133:619–628
    [Google Scholar]
  9. Chambers R. S., Sullivan P. A. 1993; Expression of the exoglucanase gene in yeast and hyphal forms of Candida albicans . FEMS Microbiol Lett 111:63–68
    [Google Scholar]
  10. Chambers R. S., Broughton M. J., Cannon R. D., Carne A., Emerson G. W., Sullivan P. A. 1993; An exo-β-(l,3)-glucanase of Candida albicans: purification of the enzyme and molecular cloning of the gene. J Gen Microbiol 139:325–334
    [Google Scholar]
  11. Chapman T., Kinsman O., Houston J. 1992; Chitin biosynthesis in Candida albicans grown in vitro and in vivo and its inhibition by nikkomycin Z. Antimicrob Agents Chemother 36:1909–1914
    [Google Scholar]
  12. Cid V. J., Álvarez A. M., Santos A. I., Nombela C., Sánchez M. 1994; Yeast exo-β-glucanases can be used as efficient and readily detectable reporter genes in Saccharomyces cerevisiae . Yeast 10:747–756
    [Google Scholar]
  13. Cid V. J., Duran A., Delrey F., Snyder M. P., Nombela C., Sdnchez M. 1995; Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae . Microbiol Rev 59:345–386
    [Google Scholar]
  14. Cormack B. P., Bertram G., Egerton M., Gow N. A. R., Falkow S., Brown A. J. P. 1997; Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans . Microbiology 143:303–311
    [Google Scholar]
  15. Correa J. 1993 Caracterizacion del gen EXG2 de Saccharomyces cerevisiae. PhD thesis University of Salamanca; Spain:
    [Google Scholar]
  16. Duffus J. H., McDowell W., Manners D. J. 1984; The use of primuline to identify the septum polysaccharide of the fission yeast Schizosaccharomyces pombe . Stain Technol 59:79–82
    [Google Scholar]
  17. Fleet G. H., Manners D. J. 1976; Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae . J Gen Microbiol 94:180–192
    [Google Scholar]
  18. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  19. Fox J. L. 1993; Fungal infection rates are increasing. ASM News 10:515–518
    [Google Scholar]
  20. de la Fuente J. M., Álvarez A., Nombela C., Sánchez M. 1992; Flow cytometric analysis of Saccharomyces cerevisiae autolytic mutants and protoplasts. Yeast 8:39–45
    [Google Scholar]
  21. Gillum A. M., Tsay E. Y. H., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5ʹ-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182
    [Google Scholar]
  22. Gow N. A. R., Robbins P. W., Lester J. W., Brown A. J. P., Fonzi W. A., Chapman T., 8c Kinsman O. S. 1994; A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans . Proc Natl Acad Sci USA 13:6216–6220
    [Google Scholar]
  23. Hanahan D. 1988; Techniques for transformation of E. coli . In DNA Cloning pp. 109–135 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  24. Hector R. F., Domer J. E., Carrow E. W. 1982; Immune responses to Candida albicans in genetically distinct mice. Infect Immun 38:1020–1028
    [Google Scholar]
  25. Herreros E., García-Sáez M. I., Nombela C., Sánchez M. 1992; A reorganized Candida albicans DNA sequence promoting homologous non-integrative genetic transformation. Mol Microbiol 6:3567–3574
    [Google Scholar]
  26. Kollár R., Petráková E., Ashwell G., Robbins P. W., Cabib E. 1995; Architecture of the yeast cell wall: the linkage between chitin and β-(l,3)-glucan. J Biol Chem 3:1170–1178
    [Google Scholar]
  27. Kuranda M. J., Robbins P. W. 1987; Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae . Proc Natl Acad Sci USA 84:2585–2589
    [Google Scholar]
  28. Kurtz M. B., Kelly R., Kirsch D. R. 1990; Molecular genetics of Candida albicans . In The Genetics of Candida pp. 21–74 Edited by Kirsch D. R., Kelly R., Kurtz M. B. Boca Raton, FL: CRC Press;
    [Google Scholar]
  29. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans . J Med Vet Mycol 13:148–153
    [Google Scholar]
  30. Leuker C. E., Hahn A. M., Ernst J. F. 1992; β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis . Mol Gen Genet 235:235–241
    [Google Scholar]
  31. Luna Arias J. P., Andaluz E., Ridruejo J. C., Olivero I., Larriba G. 1991; The major exoglucanase from Candida albicans: a non-glycosylated secretory monomer related to its counterpart from Saccharomyces cerevisiae . Yeast 7:833–841
    [Google Scholar]
  32. Mahan M. J., Slauch J. M., Hanna P. C., Camilli A., Tobias J. W., Waldor M. K., Mekalanos J. J. 1993a; Selection for bacterial genes that are specifically induced in host tissues: the hunt for virulence factors. Infect Agents Dis 2:263–268
    [Google Scholar]
  33. Mahan M. J., Slauch J. M., Mekalanos J. J. 1993b; Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688
    [Google Scholar]
  34. Molina M., Cenamor R., Nombela C. 1987; Exo-1,3-β-glucanase activity in Candida albicans: effect of the yeast-to-mycelium transition. J Gen Microbiol 133:609–617
    [Google Scholar]
  35. Muthukumar G., Suhng S. H., Magee P. T., Jewell R. D., Primerano D. A. 1993; The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-β-(l,3)-glucanase which contributes to ascospore thermotolerance. J Bacteriol 175:386–394
    [Google Scholar]
  36. Myers K. K., Sypherd P. S., Fonzi W. A. 1995; Use of URA3 as a reporter of gene expression in C. albicans . Curr Genet 27:243–248
    [Google Scholar]
  37. Nebreda A. R., Villa T. G., Villanueva J. R., del Rey F. 1986; Cloning of genes related to exo-β-glucanase production by Saccharomyces cerevisiae: Characterization of an exo-β-glu-canase structural gene. Gene 47:245–259
    [Google Scholar]
  38. Nebreda A. R., Vazquez de Aldana C. R., Villa T. G., Villanueva J. R., del Rey F. 1987; Heterogeneous glycosylation of the EXG1 gene accounts for the two extracellular exo-β-glucanases of Saccharomyces cerevisiae . FEBS Lett 220:27–30
    [Google Scholar]
  39. Nombela C., Molina M., Cenamor R., Sánchez M. 1988; Yeast β-glucanases: a complex system of secreted enzymes. Microbiol Sci 5:328–332
    [Google Scholar]
  40. Pla J., Pérez-Díaz R. M., Navarro-García F., Sánchez M., Nombela C. 1995; Cloning of Candida albicans HIS1 gene by direct homologous complementation of a histidine auxotroph using an improved double-ARS shuttle vector. Gene 165:115–120
    [Google Scholar]
  41. Pringle J. R. 1984; Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol 194:734–735
    [Google Scholar]
  42. Popolo L., Gilardelli D., Bonfante P., Vai M. 1997; Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1∆ mutant of Saccharomyces cerevisiae . J Bacteriol 179:463–469
    [Google Scholar]
  43. del Rey F., Vázquez de Aldana C. R., Correa J., San Segundo P. 1994; Characterization of genes related to beta-glucanase production in S. cerevisiae. In 15th International Conference on Yeast Genetics and Molecular Biology, Abstract 11-20A. Yeast 6 (Special Issue)504
    [Google Scholar]
  44. Romani L., Cenci E., Mencacci A., Spaccapelo R., Grohmann U., Puccetti P., Bistoni F. 1992; Gamma interferon modifies CD4 + subset expression in murine candidiasis. Infect Immun 60:4950–4952
    [Google Scholar]
  45. Romani L., Mencacci A., Cenci E., Spaccapelo R., Mosci P., Puccetti P., Bistoni F. 1993; CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. J Immunol 150:925–931
    [Google Scholar]
  46. Roncero C., Duran A. 1985; Effect of Calcofluor White and Congo Red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163:1180–1185
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. San Segundo P., Correa J., Vazquez de Aldana C. R., del Rey F. 1993; SSG1, a gene encoding a sporulation-specific β-(l,3)-glucanase in Saccharomyces cerevisiae . J Bacteriol 175:3823–3837
    [Google Scholar]
  49. Santos T., Nombela, G, Villanueva J. R., Larriba G. 1979a; Characterization and synthesis regulation of Penicilliutn italicum β-(1,6)-glucanase. Arch Microbiol 121:265–270
    [Google Scholar]
  50. Santos T., del Rey F., Conde J., Conde J. R., Nombela C. 1979b; Saccharomyces cerevisiae mutant defective in exo-β-(1,3)-glucanase production. J Bacteriol 139:333–338
    [Google Scholar]
  51. Santos T., del Rey F., Villanueva J. R., Nombela C. 1982; A mutation (exb1–1) that abolishes exo-β-(l,3)-glucanase production does not affect cell wall dynamics in Saccharomyces cerevisiae . FEMS Microbiol Lett 13:259–263
    [Google Scholar]
  52. Somogyi M. 1952; Notes on sugar determination. J Biol Chem 195:19–23
    [Google Scholar]
  53. Srikantha T., Klapach A., Lorenz W. W., Tsai L. K., Laughlin L. A., Gorman J. A., Soil D. R. 1996; The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans . J Bacteriol 178:121–129
    [Google Scholar]
  54. Toshiyuki M., Yabe T., Sudoh M., Yasuko S., Nakajima T., Arisawa M., Yamada-Okabe H. 1996; Role of three chitin synthase genes in the growth of Candida albicans . J Bacteriol 178:2416–2419
    [Google Scholar]
  55. Vázquez de Aldana C. R., Correa J., San Segundo P., Bueno A., Nebreda A. R., Mendez E., del Rey F. 1991; Nucleotide sequence of the exo-β-( 1,3)-glucanase encoding gene, EXG1, of the yeast Saccharomyces cerevisiae . Gene 97:173–182
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-9-3023
Loading
/content/journal/micro/10.1099/00221287-143-9-3023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error