1887

Abstract

Summary: was grown in batch and continuous (chemostat) culture on a glucose-mineral salts medium in the presence and absence of casein. In the absence of casein no protease activity was detected in the culture filtrate from either batch or chemostat culture. For batch cultures grown on medium containing casein, most of the proteolytic activity detected in the supernatant during exponential growth had an optimum at ca pH 5.0. However, as the cultures passed from late exponential into stationary phase, the pH profile of the protease activity broadened until most of it was in the alkaline pH region. For glucose-limited chemostat cultures grown on media containing casein, protease activity had a narrow pH optimum with maximum activity at pH 5.0. For all concentrations of casein examined, protease activity was greater in chemostat culture than in batch culture. Extracellular proteases from batch and chemostat cultures were purified by bacitracin-Sepharose affinity chromatography. At least seven proteins were purified from batch cultures but chemostat cultures contained only a single aspartic protease with a molecular mass of 40 kDa.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-9-3007
1997-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/9/mic-143-9-3007.html?itemId=/content/journal/micro/10.1099/00221287-143-9-3007&mimeType=html&fmt=ahah

References

  1. Archer D. B., Mackenzie D. A., Jeenes D. J., Roberts I. N. 1992; Proteolytic degradation of heterologous proteins expressed in Aspergillus niger . Biotechnol Lett 14:357–362
    [Google Scholar]
  2. Barkholt V. 1987; Amino acid sequence of endothiapepsin. Complete primary structure of the aspartic protease from Endothia parasitica . Eur J Biochem 167:327–338
    [Google Scholar]
  3. Barrett A. J. 1994; Classification of peptidases. Methods Enzymol 244:1–15
    [Google Scholar]
  4. Berka R. M., Ward M., Wilson L. J., Hayenga K. J., Kodama K. H., Carlomagno L. P., Thompson S. A. 1990; Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori . Gene 86:153–162
    [Google Scholar]
  5. Brock F. M., Forsberg C. W., Buchanansmith J. G. 1982; Proteolytic activity of rumen microorganisms and effects of proteinase-inhibitors. Appl Environ Microbiol 44:561–569
    [Google Scholar]
  6. Calmers T. P. G., Martin F., Durand H., Tiraby G. 1991; Proteolytic events in the processing of secreted proteins in fungi. J Biotechnol 17:51–66
    [Google Scholar]
  7. Christensen T., Woeldike H., Boel E., Mortensen S. B., Hjortshoej K., Thim L., Hansen M. T. 1988; High level expression of recombinant genes in Aspergillus oryzae . Bio/Technology 6:1419–1422
    [Google Scholar]
  8. Gray G. L., Hayenga K., Cullen D., Wilson L. J., Norton S. 1986; Primary structure of Mucor miehei aspartyl protease: evidence for a zymogen intermediate. Gene 48:41–53
    [Google Scholar]
  9. Hayashida S., Flor P. Q. 1981; Raw starch-digestive glucoamylase productivity of protease-less mutant from Aspergillus awamori var. kawachi . Agric Biol Chem 45:2675–2681
    [Google Scholar]
  10. Horiuchi H., Yanai K., Okazaki T., Takagi M., Yano K. 1988; Isolation and sequencing of a genomic clone encoding aspartic proteinase of Rhizopus niveus . J Bacteriol 170:272–278
    [Google Scholar]
  11. Hsu I.-N., Delbaere L. T. J., James M. N. G., Hofmann T. 1977; Penicillopepsin from Penicillium janthinellum crystal structure at 2.8 Å and sequence homology with porcine pepsin. Nature 266:140–145
    [Google Scholar]
  12. Ichishima E., Ojima M., Yamagata Y., Hanzawa S., Nakamura T. 1995; Molecular and enzymatic properties of an aspartic proteinase from Rhizopus hanchow . Phytochemistry 38:27–30
    [Google Scholar]
  13. Inoue H., Kimura T., Makabe O., Takahashi K. 1991; The gene and deduced protein sequences of the zymogen of Aspergillus niger acid protease A. J Biol Chem 266:19484–19489
    [Google Scholar]
  14. James M. N. G., Sielecki A. R. 1983; Structure and refinement of penicillopepsin at 1.8 Å resolution. J Mol Biol 163:299–361
    [Google Scholar]
  15. Kurono Y., Chidimatsu M., Horikoshi K., Ikeda Y. 1971; Isolation of a protease from a Rhizopus product. Agric Biol Chem 35:1668–1675
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  17. Mattern I. E., van Noort J. M., van den Berg P., Archer D. B., Roberts I. N., van den Hondel C. A. M. J. J. 1992; Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet 234:332–336
    [Google Scholar]
  18. van Noort J. M., van den Berg P., Mattern I. E. 1991; Visualization of proteases within a complex sample following their selective retention on immobilized Bacitracin, a peptide antibiotic. Anal Biochem 198:385–390
    [Google Scholar]
  19. Movahedi S., Heale J. B. 1990a; Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea Pers ex. Pers in culture and in infected carrots. Physiol Mol Plant Pathol 36:289–302
    [Google Scholar]
  20. Movahedi S., Heale J. B. 1990b; The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers ex. Pers. Physiol Mol Plant Pathol 36:303–324
    [Google Scholar]
  21. Royer J. C., Moyer D. L., Reiwitch S. G., Madden M. S., Jensen E. B., Brown S. H., Yonker C. C., Johnstone J. A., Golightly E. J., Yoder W. T., Shuster J. R. 1995; Fusarium graminearum A3/5 as a novel host for heterologous protein production. Bio/Technology 13:1479–1483
    [Google Scholar]
  22. Shintani T., Ichishima E. 1994; Primary structure of aspergillopepsin-I deduced from nucleotide-sequence of the gene and aspartic acid-76 is an essential active-site of the enzyme for trypsinogen activation. Biochim Biophys Acta 1204:257–264
    [Google Scholar]
  23. Takahashi K. 1987; The amino acid sequence of Rhizo-puspepsin, an aspartic proteinase from Rhizopus chinensis . J Biol Chem 262:1468–1478
    [Google Scholar]
  24. Trinci A. P. J. 1994; Evolution of the Quorn® myco-protein fungus, Fusarium graminearum A3/5. Microbiology 140:2181–2188
    [Google Scholar]
  25. Tonouchi N., Shoun H., Uozumi T., Beppu T. 1986; Cloning and sequencing of a gene for mucor rennin, an aspartate protease from Mucor pusillus . Nucleic Acids Res 14:7557–7568
    [Google Scholar]
  26. Vogel H. J. 1956; A convenient growth medium for Neurospora (Medium N). Microb Genet Bull 13:42–44
    [Google Scholar]
  27. Wiebe M. G., Trinci A. P. J. 1991; Dilution rate as a determinant of mycelial morphology in continuous culture. Biotechnol Bioeng 38:75–81
    [Google Scholar]
  28. Wiebe M. G., Robson G. D., Trinci A. P. J., Oliver S. G. 1992; Characterisation of morphological mutants generated spontaneously in glucose-limited continuous flow cultures of Fusarium graminearum A3/5. Mycol Res 96:555–562
    [Google Scholar]
  29. Wiebe M. G., Nováková M., Miller L., Blakebrough M. L., Robson G. D., Punt P. J., Trinci A. P. J. 1997; Protoplast production and transformation of morphological mutants of the Quorn® myco-protein fungus, Fusarium graminearum A3/5, using the hygromycin B resistance plasmid pAN7-l. Mycol Res (in press)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-9-3007
Loading
/content/journal/micro/10.1099/00221287-143-9-3007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error