The absence of -alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis Free

Abstract

Summary: In the physiological consequences of depriving lipoteichoic acid and wall teichoic acid of -alanine ester were analysed using insertional inactivation of the genes of the operon. Mutant strains which lacked positively charged -alanine ester in teichoic acids bound more positively charged cytochrome than other strains. These mutant strains also showed enhanced autolysis and a higher susceptibility to methicillin, which was expressed as accelerated wall lysis, a faster loss of viability and a slower recovery in the postantibiotic phase. The effects of methicillin could be suppressed by simultaneous addition of magnesium ions at low concentrations. The degradation of whole bacteria by bone-marrow-derived macrophages was not influenced by the surface charge and alanylation of the teichoic acids had no protective effect.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-9-2953
1997-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/9/mic-143-9-2953.html?itemId=/content/journal/micro/10.1099/00221287-143-9-2953&mimeType=html&fmt=ahah

References

  1. Bierbaum G., Sahl H. G. 1991; Induction of autolysis of Staphylococcus simulans 22 by Pep5 and nisin and influence of the cationic peptides on the activity of the autolytic enzymes. In Nisin and Novel Antibiotics pp. 386–396 Edited by Jung G., Sahl H. G. Leyden: ESCOM;
    [Google Scholar]
  2. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. 1972; Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol 110:281–290
    [Google Scholar]
  3. Chatterjee A. N., Mirelman D., Singer H. J., Park J. T. 1969; Properties of a novel pleiotropic bacteriophage-resistant mutant of Staphylococcus aureus H. J Bacteriol 100:846–853
    [Google Scholar]
  4. Childs W., G, III & Neuhaus F. C. 1980; Biosynthesis of d-alanyl-lipoteichoic acid: characterization of ester-linked d-alanine in the in vitro-synthesized product. J Bacteriol 143:293–301
    [Google Scholar]
  5. Cleveland R. F., Hӧltje J. V., Wicken A. J., Tomasz A., Daneo-Moore, L & Shockman G. D. 1975; Inhibition of bacterial wall lysins by lipoteichoic acids and related compounds. Biochem Biophys Res Commun 67:1128–1135
    [Google Scholar]
  6. Cleveland R. F., Daneo-Moore L., Wicken A. J., Shockman G. D. 1976; Effect of lipoteichoic acid and lipids on lysis of intact cells of Streptococcus faecalis . J Bacteriol 127:1582–1584
    [Google Scholar]
  7. Debabov D. V., Heaton M., P, Zhang Q., Stewart K. D., Lambalot R. H., Neuhaus F. C. 1996; The d-alanyl carrier protein in Lactobacillus casei: cloning, sequencing and expression of dltC . J Bacteriol 178:3869–3876
    [Google Scholar]
  8. Fiedler F., Glaser L. 1973; Assembly of bacterial cell walls. Biochim Biophys Acta 300:467–485
    [Google Scholar]
  9. Fischer W. 1988; Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 29:233–302
    [Google Scholar]
  10. Fischer W., Rӧsel P., Koch H. U. 1981; Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus . J Bacteriol 146:467–475
    [Google Scholar]
  11. Foster S.-J. 1991; Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2 . J Gen Microbiol 137:1987–1998
    [Google Scholar]
  12. Graham L. L., Beveridge T. J. 1994; Structural differentiation of the Bacillus subtilis 168 cell wall. J Bacteriol 176:1413–1421
    [Google Scholar]
  13. Gutberlet T., Markwitz S., Labischinski H., Bradaczek H. 1991; Monolayer investigations on the bacterial amphiphile lipoteichoic acid and on lipoteichoic acid/dipalmitoylphosphati-dylglycerol mixtures. Makromol Chem Macromol Symp 46:283–287
    [Google Scholar]
  14. Gutmann, L, Al-Obeid S., Billot-Klein D., Ebnet E., Fischer W. 1996; Penicillin tolerance and modification of lipoteichoic acid associated with expression of vancomycin resistance in Van B-Type Enterococcus faecium D366. Antimicrob Agents Chemother 40:257–259
    [Google Scholar]
  15. Haas R., Koch H. U., Fischer W. 1984; Alanyl turnover from lipoteichoic acid to teichoic acid in Staphylococcus aureus . FEMS Microbiol Lett 21:27–31
    [Google Scholar]
  16. Heaton M. P., Neuhaus F. C. 1992; Biosynthesis of d-alanyl lipoteichoic acid: cloning, nucleotide sequence, and gene expression of the Lactobacillus casei gene for d-alanine activating enzyme. J Bacteriol 174:4707–4717
    [Google Scholar]
  17. Heaton M. P., Neuhaus F. C. 1994; Role of d-alanyl carrier protein in the biosynthesis of d-alanyl-lipoteichoic acid. J Bacteriol 176:681–690
    [Google Scholar]
  18. Herbold D. R., Glaser L. 1975; Bacillus subtilis N-acetyl-muramic acid l-alanine amidase. J Biol Chem 250:1676–1682
    [Google Scholar]
  19. Hӧltje J.-V., Tomasz A. 1975; Lipoteichoic acid: a specific inhibitor of autolysin activity in Pneumococcus . Proc Natl Acad Sci USA 72:1690–1694
    [Google Scholar]
  20. Hughes A. H., Hancock I. C., Baddiley J. 1973; The function of teichoic acids in cation control in bacterial membranes. Biochem J 132:83–93
    [Google Scholar]
  21. Kersten T., Wecke J. 1993; Delayed penicillin-induced bacteriolysis of staphylococci by some cations. In: Fifty Years of Penicillin Application, History and Trends pp. 364–372 Edited by Kleinkauf H., von Dӧhren H. Prague: Public;
    [Google Scholar]
  22. Koch H. U., Dӧker R., Fischer W. 1985; Maintenance of d-alanine ester substitution of lipoteichoic acid by re-esterification in Staphylococcus aureus . J Bacteriol 164:1211–1217
    [Google Scholar]
  23. Krüger D., Giesbrecht P. 1989; Flow microcalorimetry as a tool for an improved analysis of antibiotic activity: the different stages of chloramphenicol action. Experientia 45:322–325
    [Google Scholar]
  24. Labischinski H., Naumann D., Fischer W. 1991; Small and medium angle X-ray analysis of bacterial lipoteichoic acid phase structure. Eur J Biochem 202:1269–1274
    [Google Scholar]
  25. Lambert P. A., Hancock I. C., Baddiley J. 1975; Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids. Biochem J 151:671–676
    [Google Scholar]
  26. Lambert P. A., Hancock I. C., Baddiley J. 1977; Occurrence and function of membrane teichoic acids. Biochim Biophys Acta 472:1–12
    [Google Scholar]
  27. Mauël, G, Bauduret A., Chervet C., Beggah S., Karamata D. 1995; In Bacillus subtilis 168, teichoic acid of the cross-wall may be different from that of the cylinder: a hypothesis based on transcription analysis of tag genes. Microbiology 141:2379–2389
    [Google Scholar]
  28. Neuhaus F., G, Heaton M. P., Debabov D. V., Zhang Q. 1996; The dlt operon in the biosynthesis of d-alanyl lipoteichoic acid in Lactobacillus casei . Microb Drug Resist 2:77–84
    [Google Scholar]
  29. Perego M., Glaser P., Minutello A., Strauch M. A., Leopold K., Fischer W. 1995; Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis . J Biol Chem 270:15598–15606
    [Google Scholar]
  30. Rescott D. L., Nix D. E., Holden P., Schentag J. J. 1988; Comparison of two methods for determining in vitro postantibiotic effects of three antibiotics on Escherichia coli . Antimicrob Agents Chemother 32:450–453
    [Google Scholar]
  31. Rogers H. J., Taylor, G, Rayter S., Ward J. B. 1984; Purification and properties of autolytic endo-β-N-acetylglucosaminidase and the N-acetylmuramyl-l-alanine amidase from Bacillus subtilis strain 168. J Gen Microbiol 130:2395–2402
    [Google Scholar]
  32. Sonnenfeld E. M., Beveridge T. J., Koch A. L., Doyle R. J. 1985; Asymmetric distribution of charge on the cell wall of Bacillus subtilis . J Bacteriol 163:1167–1171
    [Google Scholar]
  33. Suginaka H., Shimatani M., Ohno Y., Yano I. 1979; Effects of bacterial lipids and lipoteichoic acid on extracellular autolysin activity from Staphylococcus aureus . FEMS Microbiol Lett 5:353–355
    [Google Scholar]
  34. Wecke J., Perego M., Fischer W. 1996; d-Alanine deprivation of Bacillus subtilis teichoic acids is without effect on cell growth and morphology but affects the autolytic activity. Microb Drug Resist 2:123–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-9-2953
Loading
/content/journal/micro/10.1099/00221287-143-9-2953
Loading

Data & Media loading...

Most cited Most Cited RSS feed