1887

Abstract

Summary: The role of the blue copper protein azurin and cytochrome C as the possible electron donors to nitrite reductase in the dissimilatory nitrate reduction pathway in have been investigated. It was shown by an approach with mutant strains of deficient in one or both of these electron-transfer proteins that cytochrome C, but not azurin, is functional in this pathway. Expression studies demonstrated the presence of azurin in both aerobic and anaerobic cultures. A sharp increase in azurin expression was observed when cultures were shifted from exponential to stationary phase. The stationary-phase sigma factor, σ, was shown to be responsible for this induction. In addition, one of the two promoters transcribing the gene was regulated by the anaerobic transcriptional regulator ANR. An azurin-deficient mutant was more sensitive to hydrogen peroxide and paraquat than the wild-type . These results suggest a physiological role of azurin in stress situations like those encountered in the transition to the stationary phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-9-2853
1997-09-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/9/mic-143-9-2853.html?itemId=/content/journal/micro/10.1099/00221287-143-9-2853&mimeType=html&fmt=ahah

References

  1. Ambler R. P., Tobari J. 1989; Two distinct azurins function in the electron-transport chain of the obligate methylotroph Methylomonas J . Biochem J 261:495–499
    [Google Scholar]
  2. Arai H., Igarashi Y., Kodama T. 1995; Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett 371:73–76
    [Google Scholar]
  3. Arvidsson R. H. A., Nordling M., Lundberg L. G. 1989; The azurin gene from Pseudomonas aeruginosa. Cloning and characterization. Eur J Biochem 179:195–200
    [Google Scholar]
  4. Auton K. A., Anthony C. 1989; The role of cytochromes and blue copper proteins in growth of an obligate methylotroph on methanol and methylamine. J Gen Microbiol 135:1923–1931
    [Google Scholar]
  5. Barber D., Parr S. R., Greenwood C. 1976; Some spectral and steady-state kinetic properties of Pseudomonas cytochrome oxidase. Biochem J 157:431–438
    [Google Scholar]
  6. Canters G. W. 1987; The azurin gene from Pseudomonas aeruginosa codes for a pre-protein with a signal peptide. FEBS Lett 212:168–172
    [Google Scholar]
  7. Chung C. T., Niemela S. L., Miller R. H. 1989; One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86:2172–2175
    [Google Scholar]
  8. Corin A. F., Bersohn R., Cole P. E. 1983; pH dependence of the reduction-oxidation reaction of azurin with cytochrome c 551: role of histidine-35 of azurin in electron transfer. Biochemistry 22:2032–2038
    [Google Scholar]
  9. De Boer A. P. N., Reijnders W. N. M., Kuenen J. G., Stouthamer A. H., Van Spanning R. J. M. 1994; Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans . Antonie van Leeuwenhoek 66:111–127
    [Google Scholar]
  10. Dodd F. E., Hasnain S. S., Hunter W. N., Abraham Z. H. L., Debenham M., Kanzler H., Eldridge M., Eady R. R., Ambler R. P., Smith B. E. 1995; Evidence for two distinct azurins in Alcaligenes xylosoxidans (NCIMB 11015): potential electron donors to nitrite reductase. Biochemistry 34:10180–10186
    [Google Scholar]
  11. Duine J. A. 1995; Electron transfer from bacterial dehydrogenases. In From Neural Networks and Biomolecular Engineering to Bioelectronics pp. 87–94 Edited by Nicolini C. New York: Plenum;
    [Google Scholar]
  12. Edwards S. L., Davidson V. L., Hyun Y.-L., Wingfield P. T. 1995; Spectroscopic evidence for a common electron transfer pathway for two tryptophan tryptophylquinone enzymes. J Biol Chem 270:4293–4298
    [Google Scholar]
  13. Fujita M., Tanaka K., Takahashi H., Anemura A. 1994; Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Mol Microbiol 13:1071–1077
    [Google Scholar]
  14. Foote N., Turner R., Brittain T., Greenwood C. 1992; A quantitative model for the mechanism of action of cytochrome c peroxidase of Ps. aeruginosa . Biochem J 283:839–843
    [Google Scholar]
  15. Gak E. R., Chistoserdov A. Y., Lidstrom M. E. 1995; Cloning, sequencing and mutation of a gene for azurin in Methylobacillus flagellatum KT. J Bacteriol 177:4575–4578
    [Google Scholar]
  16. Galimand M., Gamper M., Zimmermann A., Haas D. 1991; Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa . J Bacteriol 173:1598–1606
    [Google Scholar]
  17. Goosen N., Vermaas D. A. M., van de Putte P. 1987; Cloning of the genes involved in synthesis of coenzyme pyrrolo-quinolinequinone from Acinetobacter calcoaceticus . J Bacteriol 169:303–307
    [Google Scholar]
  18. Hoitink C. W. G., Woudt L. P., Turenhout J. C. M., Van de Kamp M., Canters G. W. 1990; Isolation and sequencing of the Alcaligenes denitrificans azurin encoding gene: comparison with the genes encoding blue copper proteins from Pseudomonas aeruginosa and Alcaligenes faecalis . Gene 90:15–20
    [Google Scholar]
  19. Holloway B. W., Krishnapillai V., Morgan A. F. 1979; Chromosomal genetics of Pseudomonas . Microbiol Rev 43:73–102
    [Google Scholar]
  20. Horio T. 1958; Terminal oxidation system in bacteria. J Biochem 45:195–205
    [Google Scholar]
  21. Hyun Y.-L., Davidson V. L. 1995; Electron transfer reaction between aromatic amine dehydrogenase and azurin. Biochemistry 34:12249–12254
    [Google Scholar]
  22. Kawasaki S., Arai H., Igarashi Y., Kodama T. 1995; Sequencing and characterisation of the downstream region of the genes encoding nitrite reductase and cytochrome c 551 (nirSM) from Pseudomonas aeruginosa: identification of the gene necessary for biosynthesis of heme d1. Gene 167:87–91
    [Google Scholar]
  23. Merrick M. J. 1993; In a class of its own – the RNA polymerase sigma factor σ54N). Mol Microbiol 10:903–909
    [Google Scholar]
  24. Miller J. H. 1992 A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Morett E., Buck M. 1989; In vivo studies on the interaction of RNA polymerase-σ54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. J Mol Biol 210:65–77
    [Google Scholar]
  26. Nunoshiba T., deRojas-Walker T., Wishnok J. S., Tannenbaum S. R., Demple B. 1993; Activation by nitric oxide of an oxidative stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 90:9993–9997
    [Google Scholar]
  27. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  28. Ridout C. J., James R., Greenwood C. 1995; Nucleotide sequence encoding the di-haem cytochrome c 551 peroxidase from Pseudomonas aeruginosa . FEBS Lett 365:152–154
    [Google Scholar]
  29. Ronald S. L., Kropinski A. M., Farinha M. A. 1990; Construction of broad-host-range vectors for the selection of divergent promoters. Gene 90:145–148
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sawers R. G. 1991; Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAOl exhibiting structural and functional similarity to the FNR protein of Escherichia coli . Mol Microbiol 5:1469–1481
    [Google Scholar]
  32. Silvestrini M. C., Tordi M. G., Colosimo A., Antonini E., Brunori M. 1982; The kinetics of electron transfer between Pseudomonas aeruginosa cytochrome c 551 and its oxidase. Biochem J 203:445–451
    [Google Scholar]
  33. Silvestrini M. C., Galeotti G L., Gervais M., Schinina E., Barra D., Bossa F., Brunori M. 1989; Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and protein. FEBS Lett 254:33–38
    [Google Scholar]
  34. Silvestrini M., C, Falcinelli S., Ciabatti I., Cutruzzola F., Brunori M. 1994; Pseudomonas aeruginosa nitrite reductase (or cytochrome oxidase): an overview. Biochimie 76:641–654
    [Google Scholar]
  35. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791
    [Google Scholar]
  36. Tanaka K., Takahashi H. 1994; Cloning, analysis and expression of an rpoS homologue gene from Pseudomonas aeruginosa PAOl. Gene 150:81–85
    [Google Scholar]
  37. Van de Kamp M., Hali F., G, Rosato N., Finazzi-Agró, A. & Canters G. W. 1990a; Purification and characterization of a non-reconstitutable azurin, obtained by heterologous expression of the Pseudomonas aeruginosa azu gene in Escherichia coli . Biochim Biophys Acta 1019:283–292
    [Google Scholar]
  38. Van de Kamp M., Silvestrini M. C., Brunori M., Van Beeumen J., Hali F. C., Canters G. W. 1990b; Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome c 551 and nitrite reductase. Eur J Biochem 194:109–118
    [Google Scholar]
  39. Van Hartingsveldt J., Marinus M. G., Stouthamer A. H. 1971; Mutants of Pseudomonas aeruginosa blocked in nitrate and nitrite dissimilation. Genetics 67:469–482
    [Google Scholar]
  40. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  41. West S. E., Schweizer H. P., Dali C., Sauple A. K., Runyen Janecky L. J. 1994; Construction of improved Escherichia–Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa . Gene 128:81–86
    [Google Scholar]
  42. Wilson M., Greenwood C., Brunori M., Antonini E. 1975; Electron transfer between azurin and cytochrome c 551 from Pseudomonas aeruginosa . Biochem J 145:449–457
    [Google Scholar]
  43. Winteler H. V., Haas D. 1996; The homologous regulators ANR of Pseudomonas aeruginosa and FNR of Escherichia coli have overlapping but distinct specificities for anaerobically inducible promoters. Microbiology 142:685–693
    [Google Scholar]
  44. Wood P. M. 1978; Periplasmic location of the terminal reductase in nitrite respiration. FEBS Lett 92:214–218
    [Google Scholar]
  45. Yamanaka T., Ota A., Okunuki K. 1961; A nitrite reducing system reconstructed with purified cytochrome components of Pseudomonas aeruginosa . Biochim Biophys Acta 53:294–308
    [Google Scholar]
  46. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  47. Ye R. W., Haas D., Ka J.-O., Krishnapillai V., Zimmermann A., Baird C., Tiedje J. M. 1995; Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177:3606–3609
    [Google Scholar]
  48. Zannoni D. 1989; The respiratory chains of pathogenic pseudomonads. Biochim Biophys Acta 975:299–316
    [Google Scholar]
  49. Zennaro E., Ciabatti I., Cutruzzola F., DʹAlessandro R., Silvestrini M. C. 1993; The nitrite reductase gene of Pseudomonas aeruginosa: effect of growth conditions on the expression and construction of a mutant by gene disruption. FEMS Microbiol Lett 109:243–250
    [Google Scholar]
  50. Zimmermann A., Reimmann C., Galimand M., Haas D. 1991; Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli . Mol Microbiol 5:1483–1490
    [Google Scholar]
  51. Zumft W. G., Gotzmann D. J., Kroneck P. M. H. 1987; Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens . Eur J Biochem 168:301–307
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-9-2853
Loading
/content/journal/micro/10.1099/00221287-143-9-2853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error