Heat shock response and groEL sequence of Bartonella henselae and Bartonella quintana Free

Abstract

Summary: Transmission of species from ectoparasites to the mammalian host involves adaptation to thermal and other forms of stress. In order to better understand this process, the heat shock response of and was studied. Cellular proteins synthesized after shift to higher temperatures were intrinsically labelled with [S]methionine and analysed by gel electrophoresis and fluorography. The apparent molecular masses of three of the major heat shock proteins produced by the two species were virtually identical, migrating at 70, 60 and 10 kDa. A fourth major heat shock protein was larger in (20 kDa) than in (17 kDa). The maximum heat shock response in and was observed at 39 °C and 42 °C, respectively. The genes of both species were amplified, sequenced and compared to other known genes. The phylogenetic tree based on the alignment places and in a monophyletic group with . The deduced amino acid sequences of GroEL homologues contain signature sequences that are uniquely shared by members of the Gram-negative α-purple subdivision of bacteria, which live within eukaryotic cells. Recombinant His-GroEL fusion proteins were expressed in to generate specific rabbit antisera. The GroEL antisera were used to confirm the identity of the 60 kDa heat shock protein. These studies provide a foundation for evaluating the role of the heat shock response in the pathogenesis of infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2807
1997-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2807.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2807&mimeType=html&fmt=ahah

References

  1. Anderson B., Lu E., Jones D., Regnery R. 1995; Characterization of a 17-kilodalton antigen of Bartonella henselae reactive with sera from patients with cat scratch disease. J Clin Microbiol 33:2358–2365
    [Google Scholar]
  2. Batterman H. J., Peek J. A., Loutit J. S., Falkow S., Tompkins L. S. 1995; Bartonella henselae and Bartonella quintana adherence to and entry into cultured human epithelial cells. Infect Immun 63:4553–4556
    [Google Scholar]
  3. Birtles R. J., Harrison T. G., Saunders N. A., Molyneux D.H. 1995; Proposals to unify the genera Grahamella and Bartonella, with descriptions of Bartonella talpae comb, nov., Bartonella peromysci comb, nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. lnt J Syst Bacteriol 45:1–8
    [Google Scholar]
  4. de Boer H. A., Kastelein R. A. 1986; Biased codon usage: an exploration of its role in optimization of translation. . In Maximizing Gene Expression pp. 225–285 . Edited by Reznikoff W., Gold L. Stoneham, MA: Butterworth;
    [Google Scholar]
  5. Brenner D. J., OʹConnor S. P., Winkler H. H., Steigerwalt A. G. 1993; Proposals to unify the genera Bartonella and Rochalimaea with descriptions of Bartonella quintana comb, nov., Bartonella vinsonii comb, nov., Bartonella henselae comb, nov., and Bartonella elizabethae comb, nov., and to remove the family Bartonellaceae from the order Rickettsiales . Int J Syst Bacteriol 43:777–786
    [Google Scholar]
  6. Chomel B. B., Kasten R. W., Floydhawkins K. 7 other authors. 1996; Experimental transmission of Bartonella henselae by the cat flea. J Clin Microbiol 34:1952–1956
    [Google Scholar]
  7. Daly J. S., Worthington M. G., Brenner D. J., Moss C. W., Hollis D. G., Weyant R. S., Steigerwalt A. G., Weaver R. E., Daneshvar M. I., OʹConnor S. P. 1993; Rochalimaea elizabethae sp. nov. isolated from a patient with endocarditis. J Clin Microbiol 31:872–881
    [Google Scholar]
  8. van Eden W., Thole J. E. R., van der Zee R., Noordzij A., van Embden J. D. A., Hensen E. J., Cohen I. R. 1988; Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331:171–173
    [Google Scholar]
  9. Goh S. H., Potter S., Wood J. O., Hemmingsen S. M., Reynolds R. P., Chow A. W. 1996; Hsp60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol 34:818–823
    [Google Scholar]
  10. Gor D., Mayfield J. E. 1992; Cloning and nucleotide sequence of the Brucella abortus groE operon. Biochim Biophys Acta 1130:120–122
    [Google Scholar]
  11. Grosjean H., Fiers W. 1982; Preferential codon usage in procaryotic genes: the optimal codon–anticodon interaction energy and the selective usage in efficiently expressed genes. Gene 18:199–209
    [Google Scholar]
  12. Gupta R. S. 1995; Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11
    [Google Scholar]
  13. Higgins D. G., Sharp P. M. 1988; clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  14. Higgins J. A., Radulovic S., Jaworski D. C., Azad A. F. 1996; Acquisition of the cat scratch disease agent Bartonella henselae by cat fleas (Siphonaptera: Pulicidae). J Med Entomol 33:490–495
    [Google Scholar]
  15. Knobloch J., Schreiber M. 1990; Bb65, a major immune-reactive protein of Bartonella bacilliformis. . Am J Trop Med Hyg 43:373–379
    [Google Scholar]
  16. Kordick D. L., Breitschwerdt E. B. 1995; Intraerythrocytic presence of Bartonella henselae. . J Clin Microbiol 33:1655–1656
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  18. Lamb J. R., Bal V., Mendez-Samperio P., Mehlert A., So A., Rothbard J. B., Jindal S., Young R. A., Young D. B. 1989; Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol 1:191–196
    [Google Scholar]
  19. Lin J., Adams L. G., Ficht T. A. 1992; Characterization of the heat shock response in Brucella abortus and isolation of the genes encoding the GroE heat shock proteins. Infect Immun 60:2425–2431
    [Google Scholar]
  20. McGinnis Hill E., Raji A., Valenzuela M. S., Garcia F., Hoover R. 1992; Adhesion to and invasion of cultured human cells by Bartonella bacilliformis. . Infect Immun 60:4051–4058
    [Google Scholar]
  21. Marck C. 1988; DNA Strider: a “C” program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836
    [Google Scholar]
  22. Mayhew M., Hartl F.-U. 1996; Molecular chaperone proteins. . In Escherichia coli and Salmonella: Cellular and Molecular Biology 2nd edn, pp. 922–937 . Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Mitchell S. J., Minnick M. F. 1995; Characterization of a two-gene locus from Bartonella bacilliformis associated with the ability to invade human erythrocytes. Infect Immun 63:1552–1562
    [Google Scholar]
  24. Norman A. F., Regnery R., Jameson P., Greene C., Krause D. C. 1995; Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. J Clin Microbiol 33:1797–1803
    [Google Scholar]
  25. Rao V. B. 1994; Direct sequencing of polymerase chain reaction-amplified DNA. Anal Biochem 216:1–14
    [Google Scholar]
  26. Regnery R. L., Anderson B. E., Clarridge J. E. III, Rodriquez-Barradas M. C., Jones D. C., Carr J. H. 1992; Characterization of a novel Rochalimaea species, R. henselae sp. nov., isolated from blood of a febrile, human immunodeficiency virus-positive patient. J Clin Microbiol 30:265–274
    [Google Scholar]
  27. Relman D. A., Falkow S., LeBoit P. E., Perkocha L. A., Min K.-W., Welch D. F., Slater L. N. 1991; The organism causing bacillary angiomatosis, peliosis hepatis, and fever and bacteremia in immunocompromised patients. N Engl J Med 324:1514
    [Google Scholar]
  28. Reynafarje C., Ramos J. 1961; The hemolytic anemia of human bartonellosis. Blood 17:562–578
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Schwartzman W. 1996; Bartonella (Rochalimaea) infections: beyond cat scratch. Annu Rev Med 47:355–364
    [Google Scholar]
  31. Segal G., Ron E. Z. 1993; Heat shock transcription of the groESL operon of Agrobacterium tumefaciens may involve a hairpin–loop structure. J Bacteriol 175:3083–3088
    [Google Scholar]
  32. Stamm L. V., Gherardini F. C., Parrish E. A., Moomaw C. R. 1991; Heat shock response of spirochetes. Infect Immun 59:1572–1575
    [Google Scholar]
  33. Weiss E., Moulder J. W. 1984; Genus II. Rochalimaea (Macchiavello 1947) Krieg 1961, 162AL . . In Bergey's Manual of Systematic Bacteriology vol. 1 , pp. 698–701 . Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  34. Welch D. F., Pickett D. A., Slater L. N., Steigerwalt A. G., Brenner D. J. 1992; Rochalimaea henselae sp. nov., a cause of septicemia, bacillary antiomatosis, and parenchymal bacillary peliosis. J Clin Microbiol 30:275–280
    [Google Scholar]
  35. Wong M. T., Thornton D. C., Kennedy R. C., Dolan M. J. 1995; A chemically defined liquid medium that supports primary isolation of Rochalimaea (Bartonella) henselae from blood and tissue specimens. J Clin Microbiol 33:742–744
    [Google Scholar]
  36. Young D. B., Mehlert A., Smith D. F. 1990; Stress proteins and infectious diseases. . In Stress Proteins in Biology and Medicine pp. 131–165 . Edited by Morimoto R. I., Tissieres A., Georgopoulos C. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2807
Loading
/content/journal/micro/10.1099/00221287-143-8-2807
Loading

Data & Media loading...

Most cited Most Cited RSS feed