1887

Abstract

Summary: In cells of the yeast , trehalase activation, repression of (catalase), (Hsp70) and other STRE-controlled genes, feedback inhibition of cAMP synthesis and to some extent induction of ribosomal protein genes is controlled by the Ras-adenylate cyclase pathway and by the fermentable-growth-medium-induced pathway (FGM pathway). When derepressed cells are shifted from a non-fermentable carbon source to glucose, the Ras-adenylate cyclase pathway is transiently activated while the FGM pathway triggers a more lasting activation of the same targets when the cells become glucose-repressed. Activation of the FGM pathway is not mediated by cAMP but requires catalytic activity of cAMP-dependent protein kinase (cAPK; Tpk1, 2 or 3). This study shows that elimination of Sch9, a protein kinase with homology to the catalytic subunits of cAPK, affects all target systems in derepressed cells in a way consistent with higher activity of cAPK In measurements with trehalase and kemptide as substrates confirmed that elimination of Sch9 enhances cAPK activity about two- to threefold, in both the absence and presence of cAMP. it similarly affected the basal and final level but not the extent of the glucose-induced responses in derepressed cells. The reduction in growth rate caused by delation of is unlikely to be responsible for the increase in cAPK activity since reduction of growth rate generally leads to lower cAPK activity in yeast. On the other hand, deletion of abolished the responses of the protein kinase A targets in glucose-repressed cells. Re-addition of nitrogen to cells starved for nitrogen in the presence of glucose failed to trigger activation of trehalase, caused strongly reduced and aberrant repression of and , and failed to induce the upshift in expression. From these results three conclusions can be drawn: (1) Sch9 either directly or indirectly reduces the activity of protein kinase A; (2) Sch9 is not required for glucose-induced activation of the Rasadenylate cyclase pathway; and (3) Sch9 is required for nitrogen-induced activation of the FGM pathway. The latter indicates that Sch9 might be the target of the FGM pathway rather than cAPK itself.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2627
1997-08-01
2021-05-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2627.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2627&mimeType=html&fmt=ahah

References

  1. Arguelles J. C., Mbonyi, Κ., Van Aelst L., Vanhalewyn M., Jans A. W. H., Thevelein J. M. 1990; Absence of glucose-induced cAMP signalling in the Saccharomyces cerevisiae mutants cat1 and cat3 which are deficient in derepression of glucose-repressible proteins. Arch Microbiol 154:199–205
    [Google Scholar]
  2. Belazzi T., Wagner A., Wieser R., Schanz M., Adam G., Hartig A., Ruis H. 1991; Negative regulation of transcription of the Saccharomyces cerevisiae catalase-T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J 10:585–592
    [Google Scholar]
  3. Beullens M., Mbonyi K., Geerts L., Gladines D., Detremerie, Κ., Jans A. W. H., Thevelein J.M. 1988; Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. . Eur J Biochem 172:227–231
    [Google Scholar]
  4. Bissinger P. H., Wieser R., Hamilton B., Ruis H. 1989; Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the Ras-cyclic AMP pathway. Mol Cell Biol 9:1309–1315
    [Google Scholar]
  5. Boy-Marcotte E., Tadi D., Perrot M., Boucherie H., Jacquet M. 1996; High cAMP levels antagonize the reprogramming of gene expression that occurs at the diauxic shift in Saccharomyces cerevisiae. . Microbiology 142:459–467
    [Google Scholar]
  6. Broek D., Samiy N., Fasano O., Fujiyama A., Tamanoi F., Northup J., Wigler M. 1985; Differential activation of yeast adenylate cyclase by wild type and mutant Ras proteins. Cell 41:763–769
    [Google Scholar]
  7. Broek D., Toda T., Michaeli T., Levin L., Birchmeier C., Zoller M., Powers S., Wigler M. 1987; The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799
    [Google Scholar]
  8. Cameron S., Levin L., Zoller M., Wigler M. 1988; cAMP-independent control of sporulation, glycogen metabolism and heat shock resistance in S. . cerevisiae. Cell 53:555–566
    [Google Scholar]
  9. Camonis J. H., Kalékine M., Gondré B., Garreau H., Boy-Marcotte E., Jacquet M. 1986; Characterization, cloning and sequence analysis of the CDC25 gene which controls the cylic AMP level of Saccharomyces cerevisiae. . EMBO J 5:375–380
    [Google Scholar]
  10. Denis C. L., Audino D. C. 1991; The Ccr1 (Snf1) and Sch9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator Adr1 in controlling yeast ADH2 expression. Mol Gen Genet 229:395–399
    [Google Scholar]
  11. Dumortier F., Arguelles J. C., Thevelein J. M. 1995; Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2. . Microbiology 141:1559–1566
    [Google Scholar]
  12. Durnez P., Oris E., Argüelles J. C., Mergelsberg H., Thevelein J. M. 1994; Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase. Yeast 10:1049–1064
    [Google Scholar]
  13. Griffioen G., Mager W. H., Planta R. J. 1994; Nutritional upshift reponse of ribosomal protein gene transcription in Saccharomyces cerevisiae. . FEMS Microbiol Lett 123:137–144
    [Google Scholar]
  14. Griffioen G., Laan R. J., Mager W. H., Planta R. J. 1996; Ribosomal protein gene transcription in Saccharomyces cerevisiae shows a biphasic response to nutritional changes. Microbiology 142:2279–2287
    [Google Scholar]
  15. Hirimburegama K., Durnez P., Keleman J., Oris E., Vergauwen R., Mergelsberg H., Thevelein J. M. 1992; Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 138:2035–2043
    [Google Scholar]
  16. Jin M., Fujita M., Culley B. M., Apolinario E., Yamamoto M., Maundrell K., Hoffman C. S. 1995; Sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics 140:457–467
    [Google Scholar]
  17. Jones S., Vignais M.-L., Broach J. R. 1991; The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to RAS. Mol Cell Biol 11:2641–2646
    [Google Scholar]
  18. Kataoka T., Broek D., Wigler M. 1985; DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43:493–505
    [Google Scholar]
  19. Klein C., Struhl K. 1994; Protein kinase A mediates growth-related expression of ribosomal protein genes by modulating RAP1 transcriptional activity. Mol Cell Biol 14:1920–1928
    [Google Scholar]
  20. Kraakman L. S., Griffioen G., Zerp S., Groeneveld P., Thevelein J. M., Mager W. H., Planta R. J. 1993; Growth-related expression of ribosomal protein genes in Saccharomyces cerevisiae. . Mol Gen Genet 239:196–204
    [Google Scholar]
  21. Levin L. R., Kuret J., Johnston K. E., Powers S., Cameron S., Michaeli T., Wigler M., Zoller M. J. 1988; A mutation in the catalytic subunit of cAMP-dependent protein kinase that disrupts regulation. Science 240:68–70
    [Google Scholar]
  22. Lillie S. H., Pringle J. R. 1980; Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394
    [Google Scholar]
  23. Maeda T., Watanabe Y., Kunitomo H., Yamamoto M. 1994; Cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe. . J Biol Chem 269:9632–9637
    [Google Scholar]
  24. Mager W. H., Planta R. J. 1991; Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate. Mol Cell Biochem 104:181–187
    [Google Scholar]
  25. Mbonyi K,, Beullens M., Detremerie K.,, Geerts L., Thevelein J. M. 1988; Requirement of one functional RAS gene and inability of a Ras-variant to mediate the glucose-induced cAMP signal in the yeast Saccharomyces cerevisiae. . Mol Cell Biol 8:3051–3057
    [Google Scholar]
  26. Mbonyi, Κ., Van Aelst L., Arguelles J. C., Jans A. W. H., Thevelein J. M. 1990; Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains with reduced activity of cyclic AMP-dependent protein kinase. Mol Cell Biol 10:4518–4523
    [Google Scholar]
  27. Neuman-Silberberg F. S., Bhattacharya S., Broach J. R. 1995; Nutrient availability and the RAS/cyclic AMP pathway both induce expression of ribosomal protein genes in Saccharomyces cerevisiae but by different mechanisms. Mol Cell Biol 15:3187–3196
    [Google Scholar]
  28. Nikawa J., Cameron S., Toda T., Ferguson K. W., Wigler M. 1987a; Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. . Genes Dev 1:931–937
    [Google Scholar]
  29. Nikawa J., Sass P., Wigler M. 1987b; Cloning and characterization of the low-affinity cyclic phosphodiesterase gene of Saccharomyces cerevisiae. . Mol Cell Biol 7:3629–3636
    [Google Scholar]
  30. Pernambuco M. B., Winderickx J., Crauwels M., Griffioen G., Mager W. H., Thevelein J. M. 1996; Differential requirement for sugar phosphorylation in cells of the yeast Saccharomyces cerevisiae grown on glucose or grown on non-fermentable carbon sources for glucose-triggered signalling phenomena. Microbiology 142:1775–1782
    [Google Scholar]
  31. Praekelt U. M., Meacock P. A. 1990; HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 223:97–106
    [Google Scholar]
  32. Ronne H. 1995; Glucose repression in fungi. Trends Genet 11:12–17
    [Google Scholar]
  33. Sass P., Field J., Nikawa J., Toda T., Wigler M. 1986; Cloning and characterization of the high-affinity phosphodiesterase of S. cerevisiae . Proc Natl Acad Sci USA 83:
    [Google Scholar]
  34. Sherman F., Fink G. R., Hicks J. B. 1986 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Soto T., Fernandez J., Cansado J., Vicentesoler J., Gacto M. 1995a; Glucose-induced, cyclic-AMP-independent signalling pathway for activation of neutral trehalase in the fission yeast Schizosaccharomyces pombe. . Microbiology 141:2665–2671
    [Google Scholar]
  36. Soto T., Fernandez J., Cansado J., Vicentesoler J., Gacto M. 1995b; Activation of neutral trehalase by glucose and nitrogen-source in Schizosaccharomyces pombe strains deficient in cAMP-dependent protein kinase activity. FEBS Lett 367:263–266
    [Google Scholar]
  37. Tanaka K., Nakafuku M., Kaziro Y., Matsumoto K., Toh-e A. 1990; IRA2, a second gene in Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian Ras GTP-ase activating protein. Mol Cell Biol 10:4303–4313
    [Google Scholar]
  38. Thevelein J. M. 1984; Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch Microbiol 138:64–67
    [Google Scholar]
  39. Thevelein J. M. 1991; Fermentable sugars and intracellular acidification as specific activators of the Ras adenylate cyclase signalling pathway in yeast – the relationship to nutrient-induced cell cycle control. Mol Microbiol 5:1301–1307
    [Google Scholar]
  40. Thevelein J. M. 1994; Signal transduction in yeast. Yeast 10:1753–1790
    [Google Scholar]
  41. Thevelein J. M., Beullens M. 1985; Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J Gen Microbiol 131:3199–3209
    [Google Scholar]
  42. Thevelein J. M., Hohmann S. 1995; Trehalose synthase: guard to the gate of glycolysis in yeast?. Trends Biochem Sci 20:3–10
    [Google Scholar]
  43. Thevelein J. M., Beullens M., Honshoven F., Hoebeeck G., Detremerie K., den Hollander J. A., Jans A. W. H. 1987; Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: intracellular pH and the effect of membrane depolarizing compounds. J Gen Microbiol 133:2191–2196
    [Google Scholar]
  44. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. 1985; In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40:27–36
    [Google Scholar]
  45. Toda T., Cameron S., Sass P., Zoller M., Scott J. D., McBullen B., Hurwitz M., Krebs E. G., Wigler M. 1987a; Cloning and characterisation of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. . Mol Cell Biol 7:1371–1377
    [Google Scholar]
  46. Toda T., Cameron S., Sass P., Zoller M., Wigler M. 1987b; Three different genes in Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287
    [Google Scholar]
  47. Toda T., Cameron S., Sass P., Wigler M. 1988; SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2:517–527
    [Google Scholar]
  48. Van der Plaat J. B. 1974; Cyclic 3',5'-adenosine monophosphate stimulates trehalose degradation in baker’s yeast. Biochem Biophys Res Commun 56:580–587
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2627
Loading
/content/journal/micro/10.1099/00221287-143-8-2627
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error