1887

Abstract

Summary: Continuous cultures of CNCM 1210 were performed under regulated pH conditions (pH 7.0) with glycerol or glucose (20 gl) as carbon source. Cultures grown on glucose produced mainly acetate, ethanol and formate. In contrast, 1,3-propanediol (PPD) was the main product with glycerol. The carbon flow distribution at branching metabolic points was investigated. Higher PPD yields with increased dilution rate were correlated with an important increase in the relative ratio of glycerol dehydratase to glycerol dehydrogenase. Determination of intracellular triose-phosphate and fructose 1,6-biphosphate concentrations demonstrated that glyceraldehyde-3-phosphate dehydrogenase is the limiting step in glycerol dissimilation. At the pyruvate branching point, pyruvate dehydrogenase (PDH) activity was systematically detected. The pyruvate flow shifted to PDH is suspected to represent up to 22% of the acetyl-CoA formed. In addition, this enzyme pattern combined with the enhanced lactate dehydrogenase activity at high growth rates, was correlated with a decrease in the pyruvate formate-lyase activity. A regulation of this latter enzyme by the accumulation of triose-phosphate is suspected.

Funding
This study was supported by the:
  • Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME), the Organisation Nationale Interprofessionnelle des Olèagineux (ONIDOL) and INRA
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-7-2423
1997-07-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/7/mic-143-7-2423.html?itemId=/content/journal/micro/10.1099/00221287-143-7-2423&mimeType=html&fmt=ahah

References

  1. Abbad-Andaloussi S., Dürr C., Raval G., Petitdemange H. 1996; Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and on glucose. Microbiology 142:1149–1158
    [Google Scholar]
  2. Abbe K., Takahashi S., Yamada T. 1982; Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions. J Bacteriol 152:175–182
    [Google Scholar]
  3. Andersch W., Bahl H., Gottschalk G. 1983; Level of enzymes involved in acetate butyrate, acetone and butanol formation by Clostridium acetobutylicum . Eur J Appl Microbiol Biotechnol 18:327–332
    [Google Scholar]
  4. Barbirato F., Bories A., Camarasa-Claret C., Grivet J. P. 1995; Glycerol fermentation by a new 1,3-propanediol producing microorganism: Enterobacter agglomerans . Appl Microbiol Biotechnol 43:786–793
    [Google Scholar]
  5. Barbirato F., Grivet J. P., Soucaille P., Bories A. 1996a; 3-Hydroxypropionaldehyde, an inhibitory metabolite of the glycerol fermentation by enterobacterial species. Appl Environ Microbiol 62:1448–1451
    [Google Scholar]
  6. Barbirato F., Soucaille P., Bories A. 1996b; Physiologic mechanisms involved in accumulation of 3-hydroxypropion- aldehyde during fermentation of glycerol by Enterobacter agglomerans . Appl Environ Microbiol 62:4405–4409
    [Google Scholar]
  7. Biebl H., Marten S., Hippe H., Deckwer W. D. 1992; Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36:592–597
    [Google Scholar]
  8. Boenigk R., Bowien S., Gottschalk G. 1993; Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii . Appl Microbiol Biotechnol 38:453–457
    [Google Scholar]
  9. Carlsson J., Kujala U., Edlung M. B. K. 1985; Pyruvate dehydrogenase activity in Streptococcus mutans . Infect Immun 49:674–678
    [Google Scholar]
  10. Chowdhury J., Fouhy K. 1993; Vegetable oils: from table to gas tank. Chem Eng 100:35–39
    [Google Scholar]
  11. Collins E. B. 1972; Biosynthesis of flavour compounds by microorganisms. J Dairy Sci 55:1022–1028
    [Google Scholar]
  12. De Vos P., Stevens P., De Ley J. 1983; Hydrogen gas production from formate and glucose by different members of the Enterobacteriaceae. Biotechnol Lett 5:69–74
    [Google Scholar]
  13. Dürre P., Kuhn A., Gottwald M., Gottschalk G. 1987; Enzymatic investigations on butanol dehydrogenase and butyr-aldehyde dehydrogenase in extracts of Clostridium aceto-butylicum . Appl Microbiol Biotechnol 26:268–272
    [Google Scholar]
  14. Eggersdorfer M., Meyer J., Eckes P. 1992; Use of renewable resources for non-food materials. FEMS Microbiol Rev 103:355–364
    [Google Scholar]
  15. Elm R., Falbe J., Hahn H. D., Gelbke H. P. 1980 Propanediole. . In Ullmanns Encyklopädie der technischen Chemie , vol. 19 , pp. 425–432 . Edited by Bartholome E., Biekert E., Hellmann H., Ley H., Weigert M., Weise E. Weinheim: Verlag Chemie;
    [Google Scholar]
  16. Ewing W. H., Fife M. A. 1972; Enterobacter agglomerans (Beijerinck) comb. nov. (the Herbicola-Lathyri bacteria). Int J Syst Bacteriol 22:4–11
    [Google Scholar]
  17. Forsberg C. W. 1987; Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643
    [Google Scholar]
  18. Girbal L., Vasconcelos I., Soucaille P. 1994; Transmembrane pH of Clostridium acetobutylicum is inverted (more acidic inside) when the in vivo activity of hydrogenase is decreased. J Bacteriol 176:6146–6147
    [Google Scholar]
  19. Günzel B., Yonsel S., Deckwer W. D. 1991; Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3 . Appl Microbiol Biotechnol 36:289–294
    [Google Scholar]
  20. Hall R. H., 81 Stern E. S. 1950; Acid-catalysed hydration of acraldehyde. Kinetics of the reaction and isolation of 3-hydroxypropaldehyde. J Chem Soc (Lond)490–498
    [Google Scholar]
  21. Hansen R. G., Henning U. 1966; Regulation of pyruvate dehydrogenase activity in Escherichia coli K12. Biochim Biophys Acta 122:355–358
    [Google Scholar]
  22. Hess B., Wieker H. J. 1974 Pyruvate kinase from yeast. . In Methods of Enzymatic Analysis , vol. 2 , pp. 778–780 . Edited by Bergmeyer H.U. New York: Academic Press;
    [Google Scholar]
  23. Homann T., Tag C., Biebl H., Deckwer W. D., Schink B. 1990; Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126
    [Google Scholar]
  24. Honda S., Toraya T., Fukui S. 1980; In situ reactivation of glycerol-inactivated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase. J Bacteriol 143:1458–1465
    [Google Scholar]
  25. Ingraham J. L., Maaloe O., Neidhart F. C. 1983 Growth of the bacterial cell. Sanderland, USA: Sinauer Associates;
  26. Johnson E. A., Burke S. K., Forage R. G., Lin E. C. C. 1984; Purification and properties of dihydroxyacetone kinase from Klebsiella pneumoniae . J Bacteriol 160:55–60
    [Google Scholar]
  27. Knappe J., Sawers G. 1990; A radical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase reaction in Escherichia coli . FEMS Microbiol Lett 75:383–398
    [Google Scholar]
  28. Kremer D. R., 8t Hansen T. A. 1987; Glycerol and dihydroxy-acetone dissimilation in Desulfovibrio strains. Arch Microbiol 147:249–256
    [Google Scholar]
  29. Lamed R., 8t Zeikus J. G. 1980; Ethanol production by thermo-philic bacteria: relationship between fermentation product yields and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii . J Bacteriol 144:569–578
    [Google Scholar]
  30. Le Bloas P. 1992; Etude des limitations et des régulations du metabolisme central de Eubacterium limosum. PhD Thesis INSA, Toulouse, France;
  31. Lin E. C. C. 1976; Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578
    [Google Scholar]
  32. Lin E. C. C., 8t Magasanik B. 1960; The activation of glycerol dehydrogenase from Aerobacter aerogenes by monovalent cations. J Biol Chem 235:1820–1823
    [Google Scholar]
  33. Loubifère P., Salou P., Leroy M. J., Lindley N. D., Pareilleux A. 1992; Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures. J Bacteriol 174:5302–5308
    [Google Scholar]
  34. Lovitt R. W., Shen G. J., Zeikus J. G. 1988; Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum . J Bacteriol 170:2809–2815
    [Google Scholar]
  35. McPhedran P., Sommer B., Lin E. C. C. 1961; Control of ethanol dehydrogenase levels in Aerobacter aerogenes . J Bacteriol 81:852–857
    [Google Scholar]
  36. Ogbe Solomon B., Zeng A. P., Biebl H., Okechukwu Ejiofor A., Posten C., Deckwer W. D. 1994; Effects of substrate limitation on product distribution and H2/CO2 ratio in Klebsiella pneumoniae during anaerobic fermentation of glycerol. Appl Microbiol Biotechnol 42:222–226
    [Google Scholar]
  37. Padan E., Zilberstein D., 8i Schuldiner S. 1981; pH homeostasis in bacteria. Biochim Biophys Acta 650:151–166
    [Google Scholar]
  38. Petitdemange G., Dürr C., Abbad Andaloussi S., Raval G. 1995; Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum . J Ind Microbiol 15:498–502
    [Google Scholar]
  39. Ruch F. E., Lengeler J., Lin E. C. C. 1974; Regulation of glycerol catabolism in Klebsiella aerogenes . J Bacteriol 119:50–56
    [Google Scholar]
  40. Saint Amans S. 1994 Etude physiologique de la production de1,3-propanediol chez Clostridium butyricum PhD thesis, INSA, Toulouse, France;
    [Google Scholar]
  41. Sawers G., Bӧck A. 1988; Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J Bacteriol 170:5330–5336
    [Google Scholar]
  42. Snoep J. L., Teixeira de Mattos M. J., Postma P. W., Neijssel O. M. 1990; Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. Arch Microbiol 154:50–55
    [Google Scholar]
  43. Streekstra H., Teixeira de Mattos M. J., Neijssel O. M., Tempest D. W. 1987; Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol 147:268–275
    [Google Scholar]
  44. Takahashi S., Abbe K., 8i Yamada T. 1982; Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties. J Bacteriol 149:1034–1040
    [Google Scholar]
  45. Tarmy E. M., Kaplan N. O. 1968; Kinetics of Escherichia coli B d-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation. J Biol Chem 243:2587–2596
    [Google Scholar]
  46. Toraya T., Ushio K., Fukui S., Hogenkamp H. P. C. 1977; Studies on the mechanism of the adenosylcobalamin-dependent diol dehydrase reaction by the use of analogs of the coenzyme. J Biol Chem 252:963–970
    [Google Scholar]
  47. Vasconcelos I., Girbal L., Soucaille P. 1994; Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixture of glucose and glycerol. J Bacteriol 176:1443–1450
    [Google Scholar]
  48. Witt U., Müller R. J., Augusta J., Widdecke H., Deckwer W. D. 1994; Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol Chem Phys 195:793–802
    [Google Scholar]
  49. Zeng A. P. 1995; Effect of CO2 absorption on the measurement of CO2 evolution rate in aerobic and anaerobic continuous culture. Appl Microbiol Biotechnol 42:688–691
    [Google Scholar]
  50. Zeng A. P., Biebl H., Schlieker H., Deckwer W. D. 1993; Pathway analysis of glycerol fermentation by Klebsiella pneumonia: regulation of reducing equivalent balance and product formation. Enzyme Microb Technol 15:770–779
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-7-2423
Loading
/content/journal/micro/10.1099/00221287-143-7-2423
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error