1887

Abstract

Summary: The central control region (Ctl) of IncP plasmids is associated with two phenotypes: the coordinate expression of replication and transfer genes; and the ability to increase the segregational stability of a low-copy-number test plasmid. This region of the IncP plasmid R751 shows significant sequence divergence from the IncPα plasmid RK2 sequence, and two genes, and present in the IncPα region are missing in the IncP Ctl. In other respects the organization of the Ctl is basically the same. Although the two key global regulatory genes and are highly conserved, studies on their ability to repress transcription from a variety of IncPα and IncP plasmid promoters suggest differences in operator recognition by KorA and synergy with other repressors. The products of and genes are conserved; KfrA shows least conservation and, while retaining the ability to act as a transcriptional repressor, appears to have completely different DNA-binding specificity. The genes required for the plasmid segregational stabilization (partitioning) phenotype - and the KorB operator O3 - are conserved and contribute to a more efficient plasmid stabilization than the IncPα equivalents. This may indicate that the Ctl plays an especially important role in partitioning of IncP plasmids, since they lack the second stability region () found in IncP plasmids.

Funding
This study was supported by the:
  • MRC Project (Award G8919550CB and G9231237CB)
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-7-2167
1997-07-01
2021-05-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/7/mic-143-7-2167.html?itemId=/content/journal/micro/10.1099/00221287-143-7-2167&mimeType=html&fmt=ahah

References

  1. Bagdasarian M. M., Amann E., Lurz R., Rueckert B., Bagdasarian M. 1984; Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida: construction of broad-host-range, controlled expression vectors. Gene 26:273–282
    [Google Scholar]
  2. Barth P. T., Grinter N. J. 1974; Comparison of the deoxyribonucleic acid molecular weights and homologies of plasmids conferring resistance to streptomycin and sulphonamide. J Bacteriol 120:618–630
    [Google Scholar]
  3. Bechhofer D. H., Figurski D. H. 1983; Map location and nucleotide sequence of korA, a key regulatory gene of promiscuous plasmid RK2. Nucleic Acids Res 11:7453–7469
    [Google Scholar]
  4. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  5. Chikami G. K., Guiney D. G., Schmidhauser T. J., Helinski D.R. 1985; Comparison of ten IncP plasmids: homology in the regions involved in plasmid replication. J Bacteriol 162:656–660
    [Google Scholar]
  6. Cohen S. N., Chang A. C. Y., Hsu H. 1972; Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R factor DNA. Proc Natl Acad Sci USA 69:2110–2114
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  8. Figurski D. H., Pohlman R. F., Bechhofer D. H., Prince A. S., Kelton C. A. 1982; Broad-host-range RK2 encodes multiple kil genes potentially lethal to Escherichia coli host cells. Proc Natl Acad Sci USA 79:1935–1939
    [Google Scholar]
  9. Goncharoff P., Saadi S., Chang C. H., Saltman L. H., Figurski D. H. 1991; Structural, molecular and genetic analysis of the kilA operon of broad-host-range plasmid RK2. J Bacteriol 173:3463–3477
    [Google Scholar]
  10. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. J Biol Ghent 177:751–766
    [Google Scholar]
  11. Guiney D. G., Lanka E. 1989 Conjugative transfer in IncP plasmids. . In Promiscuous Plasmids in Gram-negative Bacteria , pp. 27–54 . Edited by Thomas C. M. London: Academic Press;
    [Google Scholar]
  12. Heinemann J. A., Sprague G. F. J. R. 1989; Bacterial conjugative plasmids mobilise DNA transfer between bacteria and yeast. Nature 340:205–209
    [Google Scholar]
  13. Jagura-Burdzy G., Thomas C. M. 1992; kfrA gene of broad host range plasmid RK2 encodes a novel DNA binding protein. J Mol Biol 225:651–660
    [Google Scholar]
  14. Jagura-Burdzy G., Thomas C. M. 1995; Purification of KorA protein from broad-host-range plasmid RK2: definition of a hierarchy of KorA operators. J Mol Biol 253:39–50
    [Google Scholar]
  15. Jagura-Burdzy G., Khanim F., Smith C. A., Thomas C. M. 1992; Crosstalk between plasmid vegetative replication and conjugative transfer: regulation of the trfA operon by trbA of broad-host-range plasmid RK2. Nucleic Acids Res 20:3939–3944
    [Google Scholar]
  16. Jobanputra R. S., Datta N. 1974; Trimethoprim R-factors in enterobacteria from clinical specimens. J Med Microbiol 7:169–177
    [Google Scholar]
  17. Kahn M., Kolter R., Thomas C. M., Figurski D. H., Meyer R., Remaut E., Helinski D. R. 1979; Plasmid cloning vehicles derived from plasmids ColEl, R6K and RK2. Methods Enzymol 68:268–280
    [Google Scholar]
  18. Lanka E., FUrste J. P., Yakobson E., Guiney D. G. 1985; Conserved regions at the DNA primase locus of the IncPa and IncP β plasmids. Plasmid 14:217–223
    [Google Scholar]
  19. Lessl M., Balzer D., Lurz R., Waters V., Guiney D. G., Lanka E. 1992a; Dissection of IncP conjugative plasmid transfer–definition of the transfer region Tra2 by mobilisation of the Tral region in trans . J Bacteriol 174:2493–2500
    [Google Scholar]
  20. Lessl M., Balzer D., Pansegrau W., Lanka E. 1992b; Sequence similarity between the RP4 Tra2 and the Ti VirB regions strongly supports the conjugative model for T-DNA transfer. J Biol Chem 267:20471–20480
    [Google Scholar]
  21. Lessl M., Balzer D., Weyrauch K., Lanka E. 1993; The mating pair formation system of plasmid RP4 defined by RSF1010 mobilisation and donor-specific phage propagation. J Bacteriol 175:6415–6425
    [Google Scholar]
  22. Lobocka M., Yarmolinsky M. 1996; PI plasmid partition – a mutational analysis of ParB. J Mol Biol 259:366–382
    [Google Scholar]
  23. Ludtke D. N., Eichorn B. G., Austin S. J. 1989; Plasmid partition functions of the P7 prophage. J Mol Biol 209:393–406
    [Google Scholar]
  24. Meyer R. J., Shapiro J. A. 1980; Genetic organisation of the broad-host-range IncP-1 plasmid R751. J Bacteriol 143:1362–1373
    [Google Scholar]
  25. Motallebi-Veshareh M., Rouch D. A., Thomas C. M. 1990; A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol Microbiol 4:1455–1463
    [Google Scholar]
  26. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. 1986; Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273
    [Google Scholar]
  27. Pansegrau W., Lanka E. 1987; Conservation of a common backbone in the genetic organisation of the IncP plasmids RP4 and R751. Nucleic Acids Res 15:2385
    [Google Scholar]
  28. Pansegrau W., Schoumacher F., Hohn B., Lanka E. 1993; Site-specific cleavage and joining of single-stranded DNA by VirB2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci USA 91:11538–11542
    [Google Scholar]
  29. Pansegrau W., Lanka E., Barth P. T., Figurski D. H., Guiney D. G., Haas D., Helinski D. R., Schwab H., Stanisich V. A., Thomas C. M. 1994; Complete nucleotide sequence of Birmingham IncPa plasmids: compilation and comparative analysis. J Mol Biol 239:623–663
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor; NY: Cold Spring Harbor Laboratory:
    [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. 1977; DNA-sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  32. Sikorski R. S., Michaub W., Levin H. L., Boeke J. D., Hieter P. 1990; Trans-kingdom promiscuity. Nature 345:581–582
    [Google Scholar]
  33. Smith C. A., Thomas C. M. 1983; Deletion mapping of kil and kor functions in the trfA and trbB regions of broad host range plasmid RK2. Mol Gen Genet 190:245–254
    [Google Scholar]
  34. Smith C. A., Thomas C. M. 1985; Comparison of the nucleotide sequences of the vegetative replication origins of broad-host-range IncP plasmids R751 and RK2 reveals conserved features of probable functional importance. Nucleic Acids Res 13:557–572
    [Google Scholar]
  35. Smith C. A., Thomas CM. 1987; Comparison of the organisation of the genomes of phenotypically diverse plasmids of incompatibility group P: members of the IncP β sub-group are closely related. Mol Gen Genet 206:419–427
    [Google Scholar]
  36. Theophilus B. D. M., Thomas C. M. 1987; Nucleotide sequence of the transcriptional repressor gene korB which plays a key role in regulation of the copy number of broad-host-range plasmid RK2. Nucleic Acids Res 15:7443–7450
    [Google Scholar]
  37. Theophilus B. D. M., Cross M. A., Smith C. A., Thomas C. M. 1985; Regulation of the trfA and trfB promoters of broad-host-range plasmid RK2. Identification of sequence essential for regulation by trfB/korA/korD . Nucleic Acids Res 13:8129–8142
    [Google Scholar]
  38. Thomas C. M., Helinski D. R. 1989 Vegetative replication and stable maintenance of IncP plasmids. . In Promiscuous Plasmids of Gram-negative Bacteria , pp. 1–25 . Edited by Thomas C. M. London: Academic Press;
    [Google Scholar]
  39. Thomas C. M., Hussain A. A. K. 1984; The korB gene of broad-host-range plasmid RK2 is a major copy number control element which may act together with trfB by limiting trfA expression. EMBO J 3:1513–1519
    [Google Scholar]
  40. Thomas C. M., Smith C. A. 1986; The trfB region of broad host range RK2: the nucleotide sequence reveals incC and key regulatory gene trfB/korA/korD as overlapping genes. Nucleic Acids Res 14:4453–467
    [Google Scholar]
  41. Thomas C. M., Smith C. A. 1987; Incompatibility group P plasmids: genetics, evolution and use in genetic manipulation. Annu Rev Microbiol 41:77–101
    [Google Scholar]
  42. Thomas C. M., Ibbotson J. P., Wang N., Smith C. A., Tipping R., Loader N. M. 1988; Gene regulation of broad-host-range plasmid RK2: identification of three novel operons whose transcription is repressed by both KorA and KorC. Nucleic Acids Res 16:5345–5359
    [Google Scholar]
  43. Thomas C. M., Theophilus B. D., Johnston L. J., Jagura-Burdzy G., Schilf W., Lurz R., Lanka E. 1990; Identification of a 7th operon on plasmid RK2 regulated by the korA gene product. Gene 89:29–35
    [Google Scholar]
  44. Thomas C. M., Smith C. A., Ibbotson J. P., Johnston L., Wang N. 1995; Evolution of the korA–oriV segment of promiscuous IncP plasmids. Microbiology 141:1201–1210
    [Google Scholar]
  45. Thorsted P. B., Shah D. S., Macartney D. P.,, Kostelidou K., Thomas C. M. 1996; Conservation of the genetic switch between replication and transfer genes of IncP plasmids but divergence of the replication functions which are major host-range determinants. Plasmid 36:95–111
    [Google Scholar]
  46. Trieu-Cuot P., Carlier C., Martin P., Courvalin P. 1987; Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett 48:289–294
    [Google Scholar]
  47. Villaroel R., Hedges R. W., Maenhaut R., Laemans J., Engler G., Van Montagu M. M., Schell J. 1983; Heteroduplex analysis of P-plasmid evolution: the role of insertion and deletion of transposable elements. Mol Gen Genet 189:390–399
    [Google Scholar]
  48. Wake R. G., Errington J. 1995; Chromosome partitioning in bacteria. Annu Rev Genet 29:41–67
    [Google Scholar]
  49. Walter E. G., Thomas C. M., Ibbotson J. P., Taylor D. E. 1991; Transcriptional analysis, translational analysis and sequence of the lh7A-tellurite resistance region of plasmid RK2Ter. J Bacteriol 173:1111–1119
    [Google Scholar]
  50. Williams D. R., Thomas C. M. 1992; Active partitioning of bacterial plasmids. J Gen Microbiol 138:1–16
    [Google Scholar]
  51. Williams D. R., Motallebi-Veshareh M., Thomas C. M. 1993; Multifunctional repressor KorB can block transcription by preventing isomerization of RNA polymerase–promoter complexes. Nucleic Acids Res 21:1141–1148
    [Google Scholar]
  52. Yakobson E., Guiney D. G. 1983; Homology in the transfer origins of broad-host-range IncP plasmids: definition of two subgroups of P plasmids. Mol Gen Genet 192:436–438
    [Google Scholar]
  53. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  54. Zatyka M., Jagura-Burdzy G., Thomas C. M. 1994; Regulation of transfer genes of promiscuous IncPα plasmid RK2: repression of Tral region transcription both by relaxosome proteins and by the Tra2 regulator TrbA. Microbiology 140:2981–2990
    [Google Scholar]
  55. Zukowski M. M., Gaffney D. F., Speck D., Kauffman M., Findeli A., Wisecup A., Lecocq J.-P. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned pseudomonad gene. Proc Natl Acad Sci USA 80:1101–1105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-7-2167
Loading
/content/journal/micro/10.1099/00221287-143-7-2167
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error