1887

Abstract

Summary: Two key themes within food microbiology are bacterial detection and control. There is a raft of sub-headings under each of these themes, but in the last decade molecular approaches within each have made a significant contribution to the field. This is a personal review of the author’s past and present contributions and future ideas for challenging food microbiology from a molecular perspective.

Keyword(s): bacteriophage , bioluminescence , injury , lux and RpoS
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-7-2099
1997-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/7/mic-143-7-2099.html?itemId=/content/journal/micro/10.1099/00221287-143-7-2099&mimeType=html&fmt=ahah

References

  1. Ahmad K. A., Stewart G. S. A. B. 1991; The production of bioluminescent lactic acid bacteria suitable for the rapid assessment of starter culture activity in milk. J Appl Bacteriol 70:113–120
    [Google Scholar]
  2. Baldwin T. O., Devine J. H., Heckel R. C., Lin J. W., Shadel G. S. 1989; The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Pbotobacterium leiognathi and the mechanism of control of bacterial bioluminescence. J Biolumin Chemilumin 4:326–341
    [Google Scholar]
  3. Campbell A. K. 1986; Living light – chemi-luminescence in the research and clinical laboratory. Trends Biochem Sci 11:104–108
    [Google Scholar]
  4. Cohn D. H., Mileham A. J., Simon M. I., Nealson K. H., Raush S. K., Bonam D., Baldwin T. O. 1985; Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase. J Biol Chem 260:6139–6146
    [Google Scholar]
  5. Contag C. H., Contag P. R., Mullins J. I., Spilman S. D., Stevenson D. K., Benaron D. A. 1995; Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18:593–603
    [Google Scholar]
  6. Dhir V. K., 8t Dodd C. E. R. 1995; Susceptibility of suspended and surface attached Salmonella enteritidis to biocides and elevated temperatures. Appl Environ Microbiol 61:1731–1738
    [Google Scholar]
  7. Dodd C. E. R., Sharman R. L., Bloomfield S. F., Booth I. R., Stewart G. S.A. B. 1997; Inimical processes: bacterial self-destruction and sub-lethal injury. Trends Food Sci Technol (in press)
    [Google Scholar]
  8. Duffy G., Ellison A., Anderson W., Cole M. B., Stewart G. S. A. B. 1995; The use of bioluminescence to model the thermal inactivation of Salmonella typhimurium in the presence of a competitive microflora. Appl Environ Microbiol 61:3463–3465
    [Google Scholar]
  9. Ellison A., Anderson W., Cole M. B., Stewart G. S. A. B. 1994a; Modelling the thermal inactivation of Salmonella typhimurium using bioluminescence data. Int J Food Microbiol 12:323–332
    [Google Scholar]
  10. Ellison A., Cole M. B., Stewart G. S. A. B. 1994b The application of molecular biology to understanding the growth and survival of food poisoning and spoilage bacteria. . In Minimal Processing of Foods and Process Optimisation , pp. 213–227 . Edited by Singh R. P., Oliveira F. A. R. Boca Raton, FL: CRC Press;
    [Google Scholar]
  11. Foran D. R., Brown W. M. 1988; Nucleotide sequence of the luxA and luxB genes of the bioluminescent marine bacterium Vibrio fischeri . Nucleic Acids Res 16:777
    [Google Scholar]
  12. Gasson M. J. 1996; Lytic systems in lactic acid bacteria and their bacteriophages. Antonie Leeuwenhoek 70:147–159
    [Google Scholar]
  13. Graham J. 1996; Timely test spots TB ‘in hours’. New Sci 151(2043):21
    [Google Scholar]
  14. Hengge Aronis R. 1996; Back to log phase – sigma(s) as a global regulator in the osmotic control of gene-expression in Escherichia coli . Mol Microbiol 21:887–893
    [Google Scholar]
  15. dʹHérelle F. 1922; The nature of bacteriophage. Brit Med J 2:289–297
    [Google Scholar]
  16. Hill P. J., Swift S., Stewart G. S. A. B. 1991; PCR based gene engineering of the Vibrio harveyi lux operon and the Escherichia coli trp operon provides for biochemically functional native and fused gene products. Mol Gen Genet 226:41–48
    [Google Scholar]
  17. Hill P. J., Denyer S. P., Stewart G. S. A. B. 1993a; Rapid assays based on in vivo bacterial bioluminescence. Eur Microbiol 1:16–21
    [Google Scholar]
  18. Hill P. J., Rees C. E. D., Winson M. K., Stewart G. S. A. B. 1993b; The application of lux genes. Biotechnol Appl Biochem 17:3–14
    [Google Scholar]
  19. Illarionov B. A., Blinov V., Donchenko A. P., Protopopova M. V., Karginov V. A., Mertvetson N. P., Gitelson J. I. 1990; Isolation of bioluminescent functions from Photobacterium leiognathi: analysis of luxA, luxB, luxG and neighbouring genes. Gene 86:89–94
    [Google Scholar]
  20. Johnston T. C., Thompson R. B., Baldwin T. O. 1986; Nucleotide sequence of the luxB gene of Vibrio harveyi and the complete amino acid sequence of the β-subunit of bacterial luciferase. J Biol Chem 261:4805–811
    [Google Scholar]
  21. Johnston T. C., Rucker E. B., Cochrum L., Hruska K. S., Vandegrift V. 1990; The nucleotide sequence of the luxA and luxB genes of Xenorhabdus luminescens HM and a comparison of the amino acid sequences of luciferases from four species of bioluminescent bacteria. Biochem Biophys Res Commun 170:407–415
    [Google Scholar]
  22. Jones P. G., Inouye M. 1994; The cold shock response – a hot topic. Mol Microbiol 11:811–818
    [Google Scholar]
  23. Kodikara C. P., Crew H. H., Stewart G. S. A. B. 1991; Near online detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol Lett 83:261–266
    [Google Scholar]
  24. Loessner M. J., Busse M. 1990; Bacteriophage typing of Listeria species. Appl Environ Microbiol 56:1912–1918
    [Google Scholar]
  25. Loessner M. J., Wendlinger G., Scherer S. 1995; Heterogeneous endolysins in Listeria monocytogenes bacteriophages – a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 16:1231–1241
    [Google Scholar]
  26. Loessner M. J., Rees C. E. D., Stewart G. S. A., B. & Scherer S. 1996; Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Appl Environ Microbiol 62:1133–1140
    [Google Scholar]
  27. Phillips-Jones K. K. 1993; Bioluminescence (lux) expression in the anaerobe Clostridium perfringens . FEMS Microbiol Lett 106:265–270
    [Google Scholar]
  28. Ray M. K., Sitaramamma T., Ghandhi S., Shivaji S. 1994; Occurrence and expression of cspA, a cold shock gene, in antarctic psychrotrophic bacteria. FEMS Microbiol Lett 116:55–60
    [Google Scholar]
  29. Reid C. L., Waites W. M., Stewart G. S. A. B. 1993; Microbial detection and two dimensional preservative mapping using lux-based bioluminescence. Soc Appl Bact Tech Ser 31:181–189
    [Google Scholar]
  30. Sarkis G. J., Jacobs W. R., Hatfull G. F. 1995; L5 luciferase reporter mycobacteriophages – a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055–1067
    [Google Scholar]
  31. Savage R. A. 1995; Hazard analysis critical control point – a review. Food Rev lnt 4:575–595
    [Google Scholar]
  32. Siragusa G. R., Cutter C. N., Dorsa W. J., Koohmaraie M. 1995; Use of a rapid microbial ATP bioluminescence assay to detect contamination on beef and pork carcasses. J Food Prot 58:770–775
    [Google Scholar]
  33. Stewart G. S. A. B. 1990; In vivo bioluminescence: new potentials for microbiology. Lett Appl Microbiol 10:1–8
    [Google Scholar]
  34. Stewart G. S. A. B. 1993; BIOSENSORS – bacterial luminescence: development and application. Lancet 341:279–280
    [Google Scholar]
  35. Stewart G. S. A., B. & Williams P. 1992; lux genes and the applications of bacterial bioluminescence. J Gen Microbiol 138:1289–1300
    [Google Scholar]
  36. Stewart G. S. A., B. & Williams P. 1993; Shedding new light on Food Microbiology. ASM News 59:241–246
    [Google Scholar]
  37. Stewart G. S. A., B., Denyer S. P., Lewington J. 1991; Microbiology illuminated: gene engineering and bioluminescence. Trends Food Sci Technol 2:7–10
    [Google Scholar]
  38. Stewart G. S. A., B., Jassim S. A. A., Denyer S. P. 1993; Engineering microbial bioluminescence and biosensor applications. . In Molecular Biology in Clinical Research and Diagnosis , pp. 403–24 Edited by Walker M. R. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  39. Stewart G. S. A., B., Loessner M. J., Scherer S. 1996; The bacterial lux gene bioluminescent biosensor revisited. ASM News 62:297–301
    [Google Scholar]
  40. Stewart G. S. A., B., Aldsworth T. G., Sharman R. L., Gibson P. T., Dodd C. E. R. 1997; Bioluminescence – lux as an enabling tool for the microbiological analysis of food. . In Institute of Food Technology Basic Symposium Series , pp. 265–288 New York: Marcel Dekker;
    [Google Scholar]
  41. Swift S., Stewart G. S. A. B. 1994; Luminescence as a signal of spvA expression. . In Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects , pp. 93–96 Edited by Campbell A. K., Kricka L. J., Stanley P. E. Chichester: Wiley;
    [Google Scholar]
  42. Swift S., Winson M. K., Chan P. F., Bainton N. J., Birdsall M., Reeves P. J., Rees C. E. D., Chhabra S. R., Hill P. J., Throup J. P., Bycroft B. W., Salmond G. P. C., Williams P., Stewart G. S. A. B. 1993; A novel strategy for the isolation of luxl homo-logues: evidence for the widespread distribution of a LuxR: LuxI superfamily in enteric bacteria. Mol Microbiol 10:511–520
    [Google Scholar]
  43. Swift S., Throup J. P., Williams P., Salmond G. P. C., Stewart G. S. A. B. 1996; Quorum sensing: a population density component in the determination of bacterial phenotype. Trends Biochem Sci 21:214–219
    [Google Scholar]
  44. Szittner R., Meighen E. 1990; Nucleotide sequence, expression and properties of luciferase coded by lux genes from a terrestrial bacterium. J Biol Chem 265:16581–16587
    [Google Scholar]
  45. Ulitzur S. 1981; Analytical application of bacterial luminescence system. J Clin Chem Clin Biochem 19:582
    [Google Scholar]
  46. Ulitzur S., Kuhn J. 1987; Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotic susceptibility. . In Bioluminescence and Chemiluminescence: New Perspectives , pp. 463–72 Edited by Schölmerich J., Andreesen R., Karp A., Ernst M., Woods W. G. Chichester: Wiley;
    [Google Scholar]
  47. Walker A. J., Holah J. T., Denyer S. P., Stewart G. S. A. B. 1992a; The antibacterial activity of Virkon measured by the colony growth and bioluminescence of lux recombinant Listeria monocytogenes . Lett Appl Microbiol 15:80–82
    [Google Scholar]
  48. Walker A. J., Jassim S. A. A., Holah J. T., Denyer S. P., Stewart G. S. A. B. 1992b; Bioluminescent Listeria monocytogenes provide a rapid assay for measuring biocide efficacy. FEMS Microbiol Lett 91:251–256
    [Google Scholar]
  49. Walker A. J., Holah J. T., Denyer S. P., Stewart G. S. A. B. 1993; The use of bioluminescence to study the behaviour of Listeria monocytogenes when attached to surfaces. Colloids Surf 77:225–229
    [Google Scholar]
  50. Walker A. J., Stewart G. S. A., B., Shepperd F., Bloomfield S. F., Holah J. T., Denyer S. P. 1994; Bioluminescence imaging as a tool for studying biocide challenge upon planktonic and surface attached bacteria. Binary 6:16–17
    [Google Scholar]
  51. Wolber P. K., Green R. L. 1990; Detection of bacteria by transduction of ice nucleation genes. Trends Biotecbnol 8:276–279
    [Google Scholar]
  52. Xi L., Cho K. W., Tu S. C. 1991; Cloning and nucleotide sequences of lux genes and characterisation of luciferase of Xenorhabdus luminescens from a human wound. J Bacteriol 173:1399–1405
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-7-2099
Loading
/content/journal/micro/10.1099/00221287-143-7-2099
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error