Repression and inactivation of α-amylase in species during growth on cellobiose Free

Abstract

Thermophilic actinomycetes establish themselves as numerically dominant bacterial populations in selected high temperature environments by virtue of their exoenzymic ability to degrade the complex polysaccharides in thermogenic plant biomass. When were grown on a mixture of cellulose and starch in mineral salts minimal medium, α-amylase was repressed via inhibition of maltose uptake by cellobiose. Addition of cellobiose to exponential phase cells growing on maltose or maltotriose triggered rapid degradation of extant amylase in the culture fluid of wild-type cells, but not in a protease-deficient mutant of A serine protease purified from caused inactivation of the amylase in culture fluid of the mutant when added at a concentration approximating to that of the wild-type strain. The chelating agent, EDTA, accelerated inactivation by the protease, while the presence of calcium or amylase reaction products protected the amylase. Therefore, during growth in an environment containing multiple polysaccharides, these thermophiles control the levels of their extracellular depolymerizing enzymes via both inducer exclusion and proteolytic inactivation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-6-2021
1997-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/6/mic-143-6-2021.html?itemId=/content/journal/micro/10.1099/00221287-143-6-2021&mimeType=html&fmt=ahah

References

  1. Aguirre M. V., Phillips J. A., Bostwick L. J., Montenecourt B. S. 1986; Comparison of the cellulase complexes of Trichoderma reesei RL-P37 and Thermomonospora fusca YX.. Chem Eng Comm 45:93–109.
    [Google Scholar]
  2. AT T., Technologies . 1985; Statistical Quality Control Handbook. Charlotte, NC:. Delmar Printing Co.
    [Google Scholar]
  3. Bellamy W. D. 1977; Cellulose and lignocellulose digestion by thermophilic actinomycetes for single-cell protein production.. Dev Ind Microbiol 18:249–254
    [Google Scholar]
  4. Bernfeld P. 1955; Amylases, alpha and beta.. Methods Enzymol 1:149–154
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biochem 72:248–254
    [Google Scholar]
  6. Calza R. M., Irwin D. C., Wilson D. B. 1985; Purification and characterization of two β-1,4-endoglucanases from Thermomonospora fusca.. Biochemistry 24:7797–7804
    [Google Scholar]
  7. Collins B. S., Kelly C. T., Fogarty W. M., Doyle E. M. 1993; The high maltose-producing α-amylase of the thermophilic actinomycete, Thermomonospora curvata.. Appl Microbiol Biotechno 30:31–35
    [Google Scholar]
  8. Crawford D. L. 1975; Cultural, morphological and physiological characteristics of Thermomonospora fusca (strain 190Th).. Can J Microbiol 21:1842–1848
    [Google Scholar]
  9. Glymph J. L., Stutzenberger F. J. 1977; Production, purification and characterization of α-amylase from Thermomonospora curvata.. Appl Environ Microbiol 34:391–397
    [Google Scholar]
  10. Gusek T. W., Kinsella J. E. 1987; Purification and characterization of the heat-stable serine proteinase from Thermomonospora fusca YX.. Biochem J 246:511–517
    [Google Scholar]
  11. Gusek T. W., Wilson D. B., Kinsella J. E. 1988; Influence of carbon source on production of a heat stable protease from Thermomonospora fusca YX.. Appl Microbiol Biotechnol 28:80–84
    [Google Scholar]
  12. James G. T. 1978; Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers.. Anal Biochem 86:574–579
    [Google Scholar]
  13. Lao G., Wilson D. B. 1996; Cloning, sequence and expression of a Thermomonospora fusca protease gene in Streptomyces liiidans.. Appl Environ Microbiol 62:4256–4259
    [Google Scholar]
  14. Lin S.-B., Stutzenberger F. J. 1995; Purification and characterization of the major β-1,4-endoglucanase from Thermomonospora curvata.. J Appl Bacteriol 79:447–453
    [Google Scholar]
  15. Lossin R. D. 1970; Compost studies: part I.. Compost Sci 11:16–17
    [Google Scholar]
  16. Lovrien R. E., Gusek T., Hart B. 1985; Cellulase and protease specific activities of commercially available cellulase preparations.. J Appl Biochem 7:258–272
    [Google Scholar]
  17. McCarthy A. J. 1987; Lignocellulose-degrading actinomycetes.. FEMS Microbiol Rev 46:145–163
    [Google Scholar]
  18. McCarthy A. J., Ball A. S., Bachmann S. L. 1988; Ecological arid biotechnological implications of lignocellulose degradation by actinomycetes. In Biology of Actinomycetes’88, Edited by Y. Okami, T. Beppu & H. Ogawara. Tokyo:. Scientific Societies Press.283–287
    [Google Scholar]
  19. Priest F. G. 1992; Enzymes, extracellular. In Encyclopedia of Microbiology, Edited by J. Lederberg. San Diego:. Academic Press. 2:81–93
    [Google Scholar]
  20. Ristroph D. L., Humphrey A. E. 1985; Kinetic characterization of the extracellular xylanases of Thermomonospora sp.. Biotechnof Bioeng 27:832–836
    [Google Scholar]
  21. Saier M. H., Ramseier T. M. 1996; The catabolite repressor/activator (Cra) protein of enteric bacteria.. J Bacteriol 178:3411–3417
    [Google Scholar]
  22. Saier M. H., Jr , Chauvaux S., Deutscher J., Reizer J., Ye J.-J. 1995; Protein phosphorylation and the regulation of carbon metabolism: comparisons in Gram-negative versus Gram-positive bacteria.. Trends Biochem Sci 20:267–271
    [Google Scholar]
  23. Saier M. H., Jr , Chauvaux S., Deutscher S., Cook G. M., Deutscher J., Paulsen I. T., Reizer J., Ye J.-J. 1996; Catabolite repression and inducer control in Gram-positive bacteria.. Microbiology 142:217–230
    [Google Scholar]
  24. Stutzenberger F. J. 1971; Cellulase production by Thermomonospora curvata isolated from municipal solid waste compost.. Appl Microbiol 22:417–152
    [Google Scholar]
  25. Stutzenberger F. J. 1972a; Cellulolytic activity of Thermomonospora curvata: nutritional requirements for cellulase production.. Appl Microbiol 24:77–82
    [Google Scholar]
  26. Stutzenberger F. J. 1972b; Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification and product of the cellulase.. Appl Microbiol 24:83–90
    [Google Scholar]
  27. Stutzenberger F. J. 1987; Inducible thermoalkalophilic polygalacturonate lyase from Thermomonospora fusca.. J Bacteriol 169:2774–2780
    [Google Scholar]
  28. Stutzenberger F. J., Bodine A. B. 1992; Xylanase production by Thermomonospora curvata.. J Appl Bacteriol 72:504–511
    [Google Scholar]
  29. Stutzenberger F. J., Jenkins T. 1991; Temperature dependent patterns of enzyme biosynthesis in Thermomonospora curvata.. World J Microbiol Biotechnol 7:526–532
    [Google Scholar]
  30. Trigo C., Ball A. S. 1994; Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?. Microbiology 140:3145–3152
    [Google Scholar]
  31. Wheatley D. N. 1987; Predictability of the ‘selection’ of proteins for degradation: further comments.. Microbios Lett 36:77–84
    [Google Scholar]
  32. Wilson D. B. 1992; Biochemistry and genetics of actinomycete cellulases.. Crit Rev Biotechnof 12:45–63
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-6-2021
Loading
/content/journal/micro/10.1099/00221287-143-6-2021
Loading

Data & Media loading...

Most cited Most Cited RSS feed